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The Hybridization of Practical and Theoretical
Geometry in the SixteenthCentury Euclidean
Tradition *

Angela Axworthy **

This article aims to show how, in the sixteenth century, Euclidean geometry, which
was regarded as the epitome of theoretical geometry in the middle ages and in the
Renaissance, was to take up, within certain printed commentaries and translations
of Euclid’s Elements, features that were typical of practical geometry and how
this contributed to the development of an approach to geometry, and also to a
representation of geometry, that may be regarded as a hybrid of theoretical and
practical geometry within the Euclidean context.

1. Euclidean geometry and practical geometry in medieval
and early modern Europe

1.1. Euclid’s Elements and its status in pre and early modern
mathematical culture

The Elements of Euclid had become by the seventeenth century a true best-
seller. In fifteen books,¹ this treatise dealt with the properties and construc-
tions of plane magnitudes (Books I-IV), the theory of ratios and proportions

* The research that made this article possible has been carried out at the MPIWG (Berlin) in the
framework of the projectMaking Euclid practical: The impact of practical geometry on the Euclidean
tradition in the sixteenth century funded by the Gerda Henkel Stiftung (2021–2023). A part of the
research concerning the practical geometry traditionwas carried out in 2017–2018 in the framework
of a postdoctoral fellowship at the History of Science department of the Technische Universität
Berlin.
** Research Fellow of the Gerda Henkel Stiftung (contact @ angelaaxworthy.com).
¹ That is, including the two apocryphal books on regular polyhedra by Hypsicles of Alexandria and
by Isidore of Miletus which were generally published with Euclid’s thirteen books in the sixteenth
century.
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applied to magnitudes and the constructions and relations of similar figures
(Books V-IV), number theory and the theory of ratios and proportions applied
to numbers (Books VII-IX), incommensurable magnitudes (Book X) and the ge-
ometry of solid figures (Books XI-XIII), to which were added two apocryphal
books on the regular polyhedra (Books XIV-XV). All these mathematical ob-
jects were dealt with abstractly, that is, without any reference to matter, instru-
ments, or to any exterior applications of geometry or arithmetic. Their proper-
ties and modes of constructions were demonstratively derived, in the context
of theorems and problems, from self-evident or previously admitted principles
(definitions, postulates and common notions) or from previously demonstrated
propositions.

Because of the abstractness of its objects, as well as its deductive and ax-
iomatic structure, Euclid’s Elements, and most of all its geometrical books, was
held to possess the argumentative form, rigor, necessity and universality which
was conform to the notion of science based on Aristotle’s Posterior analytics.
It came, as such, to represent in the premodern era a model to follow in any
scientific endeavor.¹ Also, the fact that Euclid’s Elements started with the most
fundamental geometrical objects to end with the properties of regular polyhe-
dra enabled the geometry of Euclid to be considered in learned and lay scientific
culture (notably in the mathematical curricula,² in the visual representations³
and in artisanal contexts⁴) as the canon of geometrical knowledge, represen-
tating the science of geometry in general. In the sixteenth century, Euclid’s
Elements was held to encompass all the knowledge necessary to allow a perfect
understanding and practice ofmathematics,⁵ wherefore it was edited, translated

¹ Axworthy 2016, chap. 2, in part. 90-94 and Higashi 2018, 81-121.
² Weijers (1996, 14 and 26) and Høyrup 2014.
³ See for example the visual representation of the division of philosophy in Gregor Reisch’s Mar-
garita philosophica (Reisch 1504, 2v), in which geometry is associated with Euclid, and the fron-
tispiece of Samuel Marolois’sOpera mathematica (Marolois 1614), in which geometry is represented
by Euclid while Archimedes represents military architecture and engineering, analysed in Knobloch
2005 and Remmert 2008, 541.
⁴ L. Shelby (in Shelby 1972) showed how “for mediaeval masons Euclid had virtually become an
eponymous hero of the craft (geometry)” (p. 396), even if masons rarely had any contact with Eu-
clid’s geometrical work and identified geometry with masonry.
⁵ This is shown, for instance, in the frontispiece of Niccolò Tartaglia’s Nova scientia (1537), in
which Euclid is represented as guarding a gate leading to a numerous group of allegorical figures
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and commented on a considerable number of times and by a large number of
different authors,¹ among whom were humanists, school masters or university
lecturers, as well as learned artisans such as architects.

1.2. The origin and scope of medieval practical geometry

In the sixteenth century, the multitude of printed editions of the Elements
was rivalled by the growing number of printed treatises of practical geometry.
Practical geometry took its origin in a multitude of traditions, from the metro-
logical corpus of Hero of Alexandria, Roman agrimensura and Arabic treatises
of applied geometry to the mathematical textbooks of clerical schools and Eu-
clidean geometry.² However, it was explicitly presented as a type of geometrical
teaching in its own right from the twelfth century with Hugh of Saint-Victor’s
practica geometriae.³ In Hugh of Saint-Victor’s treatise, practical (or active) ge-
ometry was explicitly distinguished from theoretical (or speculative) geometry
and was presented as an art of measuring by instrumental means:

representing the mathematical sciences. See Valleriani 2013, 61.
¹ The following list only takes into consideration the first edition of each work. Rare were those
that were not reedited or reprinted at least once. Campanus (Venice: Ratdolt 1482), Valla (Venice:
Bevilaqua 1498), Zamberti (Venice: Tacuino 1505), Pacioli (Venice: Paganini 1509), Lefèvre d’Étaples
(Paris: Estienne 1516), Voegelin (Vienna: Singrenius 1528), Politi (Siena: Nardi 1529), Grynaeus
(Basel: Hervagius 1533), Fine (Paris: De Colines 1536), Tartaglia (Venice: Roffinelli 1543), Caiani
(Rome: Blado 1545), Ramus (Paris: Grandin 1545), Camerarius (Leipzig: Rheticus 1549), Scheubel
(Basel: Hervagius 1550), Montdoré (Paris: Vascosan 1551), Benedetti (Venice: Caesano 1553), Na-
bod (Cologne: Birkman 1556), Magnien-Gracilis (Paris: Cavellat 1557), Peletier (Lyon: Tournes &
Gazeau 1557), Vinet (Bordeaux: Millanges 1559), Xylander (Basel: Oporinus 1562), Forcadel (Paris:
De Marnef & Cavellat 1564), Dasypodius (Strasburg: Mylius 1564), Dasypodius and Herlinus (Stras-
burg: Mylius 1566), Sthen (Wittenberg: Seitz 1564), Foix-Candale (Paris: Le Royer 1566), Billings-
ley (London: Daye 1570), Commandino (Pesaro: Francichini 1572), Clavius (Rome: Accolto 1574),
Zamorano (Sevilla, La Barrera: 1576), Errard (Paris: Auvray 1598), Dybvad (Arnhem: Jansson 1603),
Dou (Leyden: Bouwensz 1606). On the sixteenth-century Euclidean tradition, see Høyrup 2019.
² Shelby 1972; L’Huillier 1994; Raynaud 2015, 9-10. The possible influence of twelfth-century He-
brew sources on the Latin medieval practical geometry tradition has been surmised in Friedman
and Garber 2022. On this issue, see also Homann 1991, 18 and Corry 2013.
³ Baron 1955. Before the twelfth century, elements of practical geometry were taught together with
notions of Euclid geometry, notably within the curricula of the cathedral schools. On this tradition,
see Høyrup 2014, as well as Evans 1976 and Zaitsev 1999. In Hugh of Saint-Victor’s Didascalicon,
the entire subject-matter of geometry corresponds to the object of practical geometry such as de-
scribed in the Practica geometriae, since he then writes that “Geometry has three parts: planimetry,
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Geometry is either theoretical (speculative) or practical (active). Theoretical geometry
uses sheer intellectual reflection to study spaces and intervals of rational dimensions.
But practical geometry uses instruments, and gets its results by working proportionally
from one figure to another.¹

AfterHugh of Saint-Victor, several othermedieval authors wrote on the topic,
such as Leonardo Fibonacci (or Leonardo of Pisa), John of Muris and Dominicus
de Clavasio. Fibonacci’s Practica geometriae dealt with measurement and divi-
sions of determinate magnitudes through more diverse techniques, mostly com-
putational.² John of Muris’ De arte mensurandi, beyond techniques to measure
and divide magnitudes, included instructions to construct figures, as well as el-
ements of trigonometry, and arithmetical and algebraic rules³ and Dominicus
de Clavasio’s fourteenth-century Practica geometriae taught both instrumental
and non-instrumental techniques to measure lengths, areas and volumes on the
basis of the theory of proportions.⁴

Many Renaissance practical geometry treatises can be placed in the continu-
ity of thismedieval tradition, such asOronce Fine’sGeometria practica (first pub-
lished as the second book of the Geometria in his 1532 Protomathesis),⁵ Leonard
andThomas Digges’ Pantometria (1571)⁶ or Jean Errard’s Geometrie et practique

altimetry, and cosmimetry” (Homann 1991, 34). S. J. Victor (in Victor 1979, 4-7) surmised that theDi-
dascalicon was written before the Practica geometriae and that, between the compositions of these
two works, Hugh would have had access to the text of Euclid’s Elements through the first Latin
translation made Adelard of Bath (probably written in the second quarter of the twefth century),
which would have motivated him to clearly distinguish practical and theoretical geometry in the
latter work.
¹ Hugh of Saint-Victor (Baron 1966, 16; transl. Frederick A. Homann 1991, 33-34): “considerandum
est quod omnis geometria disciplina aut theorica est, id est speculativa, aut practica, is est activa.
Theorica siquidem est que spacia et intervalla dimensionum rationabilium sola rationis speculatione
vestigat, practica vero est que quibusdam instrumentis agitur et ex aliis alia proportionaliter coniciendo
diiudicat” (my emphasis). On this distinction between practical geometry and theoretical geometry,
see Baron 1955; Shelby 1972; Victor 1979, 3-7; Moyon 2008, 140-141.
² Boncompagni 1862, 1; tr. Hughes 2008, 4; Victor 1979, 26-27 and 47-49; Moyon 2017, 111-113.
³ Victor 1979, 49-51; Busard 1998; Moyon 2017, 114-116.
⁴ Busard 1965 and Victor 1979, 29-30 and 51-52.
⁵ Fine 1532, 64r-99r; Fine 1544. On the status of practical geometry in Fine’s mathematical work,
see Métin 2004, Brioist 2009a and Axworthy 2016, 266-280.
⁶ Digges 1571.
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generalle d’icelle (1594),¹ which all took up Hugh of Saint-Victor’s subdivision
of practical geometry in the measure of lengths, surfaces and volumes (i.e. in al-
timetria, planimetria and cosmimetria,² the latter being later expressed through
the more general term stereometria³).

1.3. The distinction between practical and theoretical geometry
in the middle ages

If practical geometry and Euclidean geometry can be ultimately considered
as belonging to the same branch of mathematical knowledge (both dealing with
continuousmagnitudes and bearing the name geometry), if a part of the content
of practical geometry treatises was indirectly derived from Euclidean material⁴
and also if Euclidean geometry could itself be regarded as possessing a practical

¹ Errard 1594. On Errard’s practical geometry, see Métin 2016, I, 233-268.
² Saint-Victor 1966, 17. Fine 1532, 64r: Liber secundus Geometriæ, de practicis longitudinum, plano-
rum & solidorum, hoc est, linearum, superficierum, & corporum mensionibus, alijsve mechanicis, ex
demonstratis Euclidis elementis corolarius: ubi et de quadrato geometrico, et virgis seu baculis men-
sorijs. (The three parts of practical geometry are then divided in Longimetra, Planimetra, Profundime-
tra); Digges 1571, title page: A Geometrical Practise, Named Pantometria Divided into Three Bookes,
Longimetra, Planimetra, and Stereometria, Containing Rules Manifolde for Mensuration of all Lines,
Superficies and Solides; Errard 1594, 1, 13 and 45: “Le premier livre de geometrie de J. Errard de Bar-
le-Duc. De la mesure des lignes droites. Et premier de la composition de instrument. (…) Le second
livre de la mesure des Superficies planes. (…) Le troisiesme livre de la mesure des Solides”.
³ In Hugh of Saint-Victor’s Practica geometriae, cosmimetria, which literally means the measure
of the world, aims to deal with the measurement of celestial distances to be specifically applied
to spherical astronomy. The notion of stereometria thus goes beyond this aim by considering the
measures of all types of bodies.
⁴ Shelby 1972, Evans 1976, L’Huillier 1994 and Raynaud 2015, 15-16.
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aspect in the form of problemata,¹ a clear distinction between practical and the-
oretical geometry was nevertheless made between them in the introductions
of medieval practical geometry treatises,² starting with Hugh of Saint-Victor’s
Practica geometriae, but also when introducing to Euclid’s Elements, as in the
preface of Johannes de Tinemue (or John of Tynemouth) to his commentary on
Adelard of Bath’s translation of the Elements (known as Adelard III) and which
dates from the late twelfth or early thirteenth century.³ According to this pref-
ace, while the aim of theoretical geometrywould be to carry out demonstrations
concerning magnitudes, practical geometry would aim to measure magnitudes
by the means of determined measuring units, such as the perch, the palm, the
inch and the foot (pertica, palma, digitus, pes).⁴ Euclid’s geometry was then held
to belong to theoretical geometry insofar as the modus agendi of the author of
the Elements is to argue demonstratively from true and first principles.⁵ Indeed,

¹ As defined by Proclus, in his commentary on Euclid, the aim of problems is to teach how to
construct or find a certain geometrical object, while theorems aim to demonstrate a universal prop-
erty or relation of geometrical objects. Proclus (Friedlein 1873, 77; transl. Morrow 1992, 63): “The
propositions that follow from the first principles he divides into problems and theorems, the for-
mer including the construction of figures, the division of them into sections, subtractions from and
additions to them, and in general the characters that result from such procedures, and the latter
concerned with demonstrating inherent properties belonging to each figure. Just as the productive
sciences have some theory in them, so the theoretical ones take on problems in a way analogous
to production”. On the practical scope of problems, see infra.
² On the medieval practical geometry tradition and the distinction between theoretical and practi-
cal geometry, see Shelby 1972, Victor 1979, 2-5, L’Huillier 1994, Moyon 2008, I , 140-151, Raynaud
2015, 9-11.
³ Busard 2001. On this commentary, see Murdoch 1968 and Busard 2001, 12-16.
⁴ Busard 2001, 31-32: “Sapientia in theoricam et practicam. (…) Ecce mathematica continet geome-
triam quasi genus. Genus denique secundum materialem suppositionem est magnitudo circa cuius
species postea versatur. Artifex vero est tam demonstrator quam exercitator. Officium demonstra-
toris est ad intelligentiam discipline theoremata explicare (…). Officium exercitatoris est mensurare.
Est autem mensuratio certe quantitatis assignatio. Instrumentum vero demonstratoris est radius et
mensa cum pulvere. Exercitatoris vero instrumenta sunt mensure geometrice scilicet pertica cum
palma, digitus, pes, passus et ulna”.
⁵ Busard 2001, 33: “Intentio auctoris est rationalium figurarum mensurationem expedire. (…)
Modus agendi is est: Agit namque demonstrative. Est autem demonstratio argumentatio, arguens
ex primis et veris vel illorum conclusionibus. Sic enim ars proposita contexta est quod sequentia
accidunt ex premissis necessario aut principiis deinceps. Est enim demonstrativa scientia que docet
et demonstrare et demonstrat ut posteriores analeti. Et que demonstrat et non docet demonstrare
ut geometria”.
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in Tinemue’s language, the actor of theoretical geometry corresponds to the
demonstrator, which is then distinguished from the exercitator, or the actor of
practical geometry.¹

We also find an explicit distinction between theoretical and practical geome-
try in the philosophical work of Dominicus Gundisalvi,² where this distinction
is based on the distinction between practical and theoretical knowledge internal
to the division of philosophy.³ Hence, in his De divisione philosophiae, Gundis-
alvi wrote that “the end [or goal] of theoretical geometry is to teach something;
while the end of practical geometry is to do something”, founding the distinc-
tion between theoretical and practical knowledge on the opposition between
knowing and doing. He defined “the artificer of theoretical geometry” as “the
geometer who has become acquainted thoroughly with all parts of geometry
and teaches it” and “whose instrument is demonstration”, while “the artificer
of practical geometry is he who employs it in working”.⁴ Now, the examples
Gundisalvi used to present theoretical geometry in more detail are drawn from
Euclid’s Elements,⁵ which indicates that Euclid’s geometry was held in this con-
text as chiefly representative of theoretical geometry. Practical geometry, on
the other hand, is associated with the activities of the measurers, who “mea-
sure the height, the depth, or the level surface of the Earth” with various units

¹ Busard 2001, 33: “Artifex vero est tam demonstrator quam exercitator. (…) Officium demonstratoris
est ad intelligentiam discipline theoremata explicare (…) Officium exercitatoris est mensurare”.
² Gundisalvi’s classification of mathematics and characterisation of geometry takes up much of its
content from al-Farabi’s Enumeration of the sciences, of which Gundisalvi’s De scientiis constitutes
an adaptation. On Gundissalvi’s classification of sciences, see Weijers (1996, 190-191) and on the
sources of his De divisione philosophiae, see Hugonnard-Roche (1984).
³ Gundisalvi (Baur 1903, 12 and 44): “Partes igitur, in quas primum philosophia dividitur, hee sunt:
scilicet theorica et practica (…) Cum autem omnis ars dividatur in theoricam et practicam, quoniam
vel haberetur in sola cognicione mentis – et est theorica –, vel in exercicio operis – et est practica
–: profecto ars extrinsecus pertinere videtur ad theoricam, ars intrinsecus ad practicam. Ars enim
extrinsecus non tradit actum, set scienciam tantum; ars vero intrinsecus et actum dat et scienciam”.
Thus, geometry, as each part of mathematics (at least arithmetic, music, geometry, astronomy), pos-
sesses a theoretical and a practical part: (Baur 1903, 104): “geometria alia est practica, alia theorica”.
⁴ Gundisalvi (Baur 1903, 107-109); transl. in Grant 1974, 72.
⁵ Gundisalvi (Baur 1903, 106-107): “Species theorice sunt tres, scilicet operacio, sciencia, invencio
(…) ad agendum propununtur ut gracia exempli primum et secundum theorema Euclidis (…). Ad
sciendum vero proponuntur ut quintum theorema Euclidis (…). Ad inveniendum autem ponuntur
ut primum theorema tercii libri”.
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of measurement such as the foot or the cubit (as in Tinemue’s preface to Euclid’s
Elements), and of the artisans, who

exert themselves in manufacturing or in working in the mechanical arts, as a carpen-
ter works on wook, an iron worker on iron, a stone mason on cement and stones, and
similarly every artificer of the mechanical arts works according to practical [or applied]
geometry.¹

Roger Bacon offered an even more extensive definition of practical geome-
try in his Communia mathematica, defining it as dealing with mathematical in-
struments, measurements and all other useful utilitarian applications, from sur-
veying to mechanics, optics, architecture and engineering.² While distinguish-
ing practical geometry from theoretical geometry (which included Euclid’s El-
ements as well as other works³), he asserted the priority of the latter on the
former in the order of learning, dignity and utility, given that it exhibits the
causes of the instruments and operations at play within the material world and
that are useful to human life.⁴

1.4. The distinction between practical and theoretical geometry
in the sixteenth century

In the sixteenth century, practical geometry was often clearly distinguished
from theoretical geometry in the introductions of practical geometry treatises,

¹ Gundisalvi (Baur 1903, 109); transl. in Grant 1974, 72.
² Bacon 1940, 42-47: “Practica vero Geometrie descendit ad instrumenta scienciarum et mensura-
ciones et cetera opera utilia in rebus utilibus (aliter civilibus) et habet octo partes magnas”. See
Victor 1979, 37-39 and Raynaud 2015, 11.
³ Bacon 1940, 41-42: “apud Latinos non est tradita speculativa ab uno auctore nec in uno volumine
sed partim in libro Elementorum Euclidis vulgato, et in libro eius deQuantitatibus Datis, et in libris
eciam Theodosii de Speris, et in libro Jordani de Triangulis (…)”.
⁴ Bacon 1940, 41-42: “Geometria vero speculativa est prior quam sua practica, quia operacio addit
supra nudam speculacionem, et universaliter finis speculative est practica, et difficilior et nobilior
et longe utilior, sicut finis se habet ad ea que sunt ad finem. Geometria igitur speculativa docet
omnes partes quantitatis continue intrinsece, et omnes partes et omnes passiones propria earum
et omnes causas abseque eo quod descendat ad instrumenta et operaciones et cetera opera utilia in
hoc mundo”.
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as in Gregor Reisch’s Margarita philosophica (1503),¹ Fine’s Geometria practica²
and Jacques Chauvet’s Pratique universelle de geometrie (1585).³ In these texts,
practical geometry was, as in the medieval texts presented above, mostly de-
fined as an art of measuring concrete lengths, areas and volumes⁴ and theoreti-
cal geometry was explicitly identified with the geometry of Euclid.⁵

¹ Reisch 1504, r2r: “In praxim Geometriae tractatus secundus. Dis. Ex dictis nondum intelligo quo
nam pacto aut ingenio terram spaciumve terrae metiri possim quod tamen geometriae nomen vi-
sum est insinuare. Mag. Verum dicis: nam tibi in prioribus geometriae generaliora principia, pau-
casque eiusdem theorias proposui. Iam vero quia te vigilantissimum, eiusque percupidum sentio:
de metiendi modo pauca subiungere aenitar. In primis autem quid mensura: & quae eius partes
praemittam”.
² Fine 1532, 64r: “Duo sunt, optime lector, quæ in omni disciplina, studiosis omnibus solent esse
non iniucunda. unum est, facilis in disciplinam introductio: qua & via doctrinæ, & sensus eius-
dem universus aperitur. Reliquum esse videtur, collectus ex ipsa disciplina fructus, susceptorum
laborum compensator gratissimus. Præmissis itaque generalibus ipsius Geometriæ rudimentis, ad
elementorum Euclidis, & succedentium nostrorum operum intelligentiam isagogicis: consequens
nobis visum fuit, universam Geometriæ subnectere praxim, hoc est, linearum, superficierum, &
corporum, ex demonstratis Euclidis elementis, ostendere mensuram”.
³ Chauvet 1585, 1r: “Geometrie est une science qui considere la quantité continue: laquelle est
divisee en Theorique & Pratique. Et pour autant que la Theorique est suffisamment traictée &
demonstrée aux Elemens d’Euclide, nous en ferons un tacet, & renvoirons le nouveau aprentif à
iceux principes, sans lesquels il ne peult parvenir à la vraye cognoissance de la Geometrie Pra-
tique: laquelle est subdivisee en trois especes, sçauoir Longuemetre, Planemetre, & Stereometre ou
Solidimetre”.
⁴ Reisch 1504, r2r-v: “In praximGeometriae tractatus secundus.Dis. Ex dictis nondum intelligo quo
nampacto aut ingenio terram spaciumve terraemetiri possim quod tamen geometriae nomen visum
est insinuare. (…) de metiendi modo pauca subiungere aenitar. (…) de qua ea geometriae pars est:
quam altimetram vocant; quae in sursum & deorsum & illa quam planimetram dicunt: quae autem
secundum in ante & retro, dextrorsum & sinistrorsum mensurat”; Fine 1532, 64r: “universam Ge-
ometriæ (…) praxim, hoc est, linearum, superficierum, & corporum (…) mensuram”.; Chauvet 1585,
1r: “la Geometrie Pratique: laquelle est subdivisee en trois especes, sçauoir Longuemetre, Planeme-
tre, & Stereometre ou Solidimetre”. See also Chauvet’s dedicatory epistle to Anne d’Anglure, in
Chauvet 1585, a2v: “Il n’est besoin de vous dire quelle utilité la Noblesse peut recevoir de ceste Pra-
tique, puisque ce vous est une chose tant cognue & laquelle vous avez tousjours sagement estimee
estre necessaire à tout Gentil-homme qui veut faire profession de commander és Armees, soit pour
faire un Pont à faire passer la Gendarmerie, soit pour combler un fossé, ou sçavoir sur le champ de
quelle hauteur & largeur doit estre une Bresche pour recevoir vingt hommes de front”.
⁵ Reisch 1504, p7r: “Geometriae elementa & principia abunde tradidit & conscripsit Euclide pa-
ter”; Fine 1532, 64r: “ in disciplinam introductio: qua & via doctrinæ, & sensus eiusdem universus
aperitur (…) generalibus ipsius Geometriæ rudimentis, ad elementorum Euclidis”; Chauvet 1585, 1r:
“la Theorique est suffisamment traictée & demonstrée aux Elemens d’Euclide”. On the dichotomy
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In the practical geometry treatises in which only practical geometry was pre-
sented, such as the Pratique de Geometrie of Jean de Merliers (1575), the Ge-
ometria prattica of Giovanni Pomodoro (1599) and the Geometria practica of
Christoph Clavius (1604), practical geometry is then again identified with an
art of measuring concrete or dimensioned objects, lengths, areas and volumes,
as in Clavius,¹ or mainly surfaces and the lines within them, as in Pomodoro²
or Merliers. In the latter’s text, practical geometry is specifically identified with
surveying.³

Yet, as was made clear by Niccolò Tartaglia, in his 1556 General trattato de
numeri et misure, practical geometry was not restricted to an art of measuring,
since it also included a part that did not include any measurement by numerical

between theoretical and practical geometry in the sixteenth century, see Guyot and Métin 2004,
Knobloch 2005 and Axworthy 2016, 255-257, for the specific case of Oronce Fine.
¹ Clavius 1604, p. 1-3: ”QuandoquidemMathematicarum disciplinarum stadium scribendo ingressi,
nonnullam eius partem, favente Deo, percurrimus: Geometriae practicae tractatio omittenda non
fuit (…) Etenim dum certa ratio traditur, qua camporum longitudines, altitudines montium, vallium
depressiones, locorum omnium inaequalitates inter se, & intervalla deprehendere metiendo debeamus:
cuilibet liquet, ut arbitror, quantum commodi, utilitatisque substructioni aedificiorum, cultui agro-
rum, armorum tractationi, contemplationi siderum, aliisque artibus, & disciplinis ex horum cogni-
tione manare possit. Нaес enim una Mathematicarum rerum scientiae pars, sicut ab artificibus ob
sui necessitatem avidè semper est arrepta: ita ob insignes utilitates, quas in re tota militari supped-
itat, in maximorum Principum, Regumque aulis omni tempestate versata est. (…) decrevi, si quà
possem, perficere: ut, quicquid utiliter in Geometria practica ab aliis traditum, à me etiam inven-
tum est, unius operis gyro clauderetur. Quod opus, cum species tres quantitatis continuae sint, in
tria membra, partesque praecipuas secuimus: In prima rectas lineas, in altera superficies, corpora me-
tientes in postrema: cui annectuntur alia, qua: non tam ad quantitatis dimensionem, quam ad alias
Geometria praxes, ac demonstrationes pertinent, à nostro instituto non aliena.” (My emphasis.
² Pomodoro 1599, Table VI (commentary by Giovanni Scala): “In questa sesta Tavola l’Autore ci
comincia hora à insegnare la practica della Geometria, perche propone in essa figure, le quali sono
misurate con numeri” ; Table VI: “Misurare in piu modi praticalmente li quadrati per numeri sani, &
sani è roti”; Table VII: “Lato 12 s’adimanda il Diametro Praticalmente” or Table XIII: “Modi diversi
geometrici, et prattici per trovare la superficie delle figure quadrilatere, dette doppi capitagliati”.
³ Merliers 1575, A2r: “Cognoissant Monseigneur, le grand prouffit & utilité, que la Geometrie ap-
porte à l’homme, J’ay mis tout mon estude à faire une briefve & facile description de la Practique
d’icelle, qui contient le moyen d’Arpenter, c’est à dire de mesurer exactement toutes Superficies closes
& bornées de lignes droictes, ou costez droictz”.
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means and was purely geometrical,¹ which corresponds to what L. Shelby² des-
ignated as “constructive geometry”, which is mainly useful to master masons
and artisans in the production of artefacts. Moreover, for Tartaglia, the first part
of practical geometry, which deals with measuring practices, is itself subdivided
in two categories, the minor or lower type, which deals with properly utilitar-
ian problems involving the measurement of magnitudes and which is primarily
addressed to surveyors, and the major or higher type of computational practical
geometry, which differs from the minor or lower type in the fact that it deals
with more speculative and less utilitarian matters.³ Now, as announced in the
same passage, Tartaglia intends to deal with each of these three types or sub-
types of practical geometry in his treatise, part III dealing with the lower part
of mensorial practical geometry, part IV dealing with the higher part, and part
V dealing with constructive geometry.

In the Italian translation and commentary on Euclid’s Elements Tartaglia first
published in 1543, which is one of the few commentaries on the Elements in
which a clear distinction is made between practical and theoretical geometry,
practical geometry is however mainly identified with the properly geometri-
cal or constructive type, since its aim is to teach how “to draw, construct and
manually make all things that are necessary”, being thus presented as relevant
mainly to artisans.⁴

¹ Tartaglia 1556 III, 1r: “Delle specie della pratica geometrica. La general pratica geometrica di-
videmo in due parti, over specie, la prima delle quali è quella, che nelle gran quantita, & figure, si
mescola con la pratica arithmetica, cioe la si denomina, de rappresenta con numeri di misure lin-
eali, over superficiali, over corporee, & la seconda, laqual è pura geometrica non è mista con numeri,
come al suo luogo s’intendera.”
² Shelby 1972.
³ Tartaglia 1556 III, 1r: “Anchor la detta pratica mista con numeri dividemo in due specie. L’una
chiamiamo pratica menore, & l’altra maggiore, la menore è la piu humile, over bassa, ma la piu
utile, & necessaria a ogni qualita di persone, perche quella ne da il modo, & la regola da saper
conoscer con numeri, & misure la quantita si corporea, come superficiale di tutte quelle cose, che
manualmente misurar si possa (essendo personalmente sul fatto) & di questa sorte di pratica si ha
da trattar (naturalmente parlando) in questa nostra terza parte, delle altre due specie, nelle due
sequenti parti abondantemente ne parleremo.”
⁴ Tartaglia 1543, 3v: “Anchora inanzi che piu oltra procediamo bisogna notar qualmente la scientia
di Geometria, & di Arithmetica se divide in due specie, una del lequal (come fu detto in principio)
é detta Theorica, cioe, speculativa,over contemplativa: l’altra è detta prattica, cioe, attiva, over op-
erativa. La theorica, cioe, la speculativa (come afferma Ptolomeo nell’Almagesto) è per augmento
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In this context, theoretical geometry is presented as aimed towards the pro-
duction of knowledge, allowing “to continually discover new things and to aug-
ment science”.¹ But in the General trattato, where practical geometry is pre-
sented as more diverse in nature than in the commentary on Euclid, theoretical
geometry is said to “investigate the proximate causes of the other [i.e. the practi-
cal part of geometry], to consider and examine quantities, proportions and their
measures by a speculation of the mind, and Euclid of Megara speaks about this
[type of geometry] and deals with it in twelve books.”² Theoretical geometry
is thus clearly identified here with the type of geometry taught in Euclid’s Ele-
ments.

Juan Perez de Moya, in the introduction of his 1573 Geometria practica y spec-
ulativa (whichwas based for a great part on his 1568Geometria pratica),³ did not
at first describe the object of practical geometry with precision, but he clearly
distinguished it from theoretical geometry, which, on the other hand, was ex-
plicitly identified with Euclidean geometry.⁴ Practical geometry is then said to

della scientia, perche per mezzo della speculativa possiamo ritrovar continuamente cose nove, &
ampliar la scientia. Ma la prattica, cioe, la operativa è per operar, cioe, per designare, construer, &
fabricar manualmente tutte le cose occurrente.” Interestingly, this part was suppressed in the 1565
edition.
¹ Tartaglia 1543, 3v: “Anchora inanzi che piu oltra procediamo bisogna notar qualmente la scientia
di Geometria, & di Arithmetica se divide in due specie, una del lequal (come fu detto in principio)
é detta Theorica, cioe, speculativa, over contemplativa: l’altra è detta prattica, cioe, attiva, over
operativa. La theorica, cioe, la speculativa (come afferma Ptolomeo nell’Almagesto) è per augmento
della scientia, perche per mezzo della speculativa possiamo ritrovar continuamente cose nove, &
ampliar la scientia. Ma la prattica, cioe, la operativa è per operar, cioe, per designare, construer, &
fabricar manualmente tutte le cose occurrente.” Interestingly, this part was suppressed in the 1565
edition.
² Tartaglia 1556, III, 1r: “Delle specie della Geometria. Le specie principali della geometria sono
due, delle quali l’una è detta theorica, & l’altra pratica. La theorica è quella che per investigare le
propinque cause de gli effetti di quella, considera, & guarda le quantita, le proportioni, & le misure
di quelle, con una speculatione di mente, & di questa abondantemente ne parla, & tratta Euclide
Megarense in dodici libri.” Euclid is here said to deal with theoretical geometry in twelve books
since he counts the number of books in the Elements when including the two apocryphal books
by Hypsicles and Isidore of Miletus, which make altogether fifteen books, minus the three books
pertaining to arithmetic (Books VII–IX).
³ On Perez de Moya’s mathematical works, see Silva 2013.
⁴ Perez de Moya 1573, 5: “Dividese [la geometria] como las demas artes en Theorica, y en Practica.
La Theorica, ò Speculativa es aquella, que por hallar la causa de los effectos de la Practica, consid-
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“deal with putting into effect or implementing the reasons on which the mind
reflects in theoretical geometry”, marking its operative character and its depen-
dence on theoretical geometry. Yet, after distinguishing in such way practical
and theoretical geometry, and after briefly mentioning the three different types
of magnitudes considered in geometry (line, surface, solid), he distinguished the
three parts of the practice of measurement into altimetria, planimetria and stere-
ometria, which (as he announced then) will be treated respectively in Books 2,
3 and 4, ¹ that is, after presenting, in Book 1, the more theoretical geometrical
principles (i.e. mainly definitions, postulates and common notions drawn from
Euclid’s Elements) which are necessary to the apprehension of the following
books.²

In a different manner, Jean Bullant, in his 1562 Petit Traicté d’horologiographie
et geometrie pratique, distinguished the “speculative and theoretical part” of ge-
ometry taught by Euclid from a geometry familiar to artisans.³ In the preface

era la quantidad, y proporcion con una especulacion del entendimiento, de lo qual trato Euclides
compendiosa y cumplidamente, y nosotros en este tratado diremos lo que hiziere al proposito, para
entendimiento de lo que en nuestras obras pretendemos dezir. La Practica trata, de poner en effecto,
ò en obra las razones que el entendimiento en la Theorica Speculo, de la qual trataremos en los otros li-
bros siguientes desta obra” (my emphasis). When Perez de Moya writes: “LaTheorica, ò Speculativa
es aquella, que por hallar la causa de los effectos de la Practica, considera la quantidad, y proporcion
con una especulacion del entendimiento, de lo qual trato Euclides compendiosa y cumplidamente”,
he seems to be taking up the definition of theoretical geometry that Tartaglia presented above
when he wrote (Tartaglia 1556 III, 1r): “La theorica è quella che per investigare le propinque cause
de gli effetti di quella, considera, & guarda le quantita, le proportioni, & le misure di quelle, con una
speculatione di mente, & di questa abondantemente ne parla, & tratta Euclide Megarense in dodici
libri”.
¹ Perez de Moya 1573, 5: “Los generos de las medidas son tres. Altimetria, Planimetría, Stereometria.
Altimetria trata de la orden de medir las cosas segun sus anchuras, ò alturas, ò larguras solamente.
En este genero entra el medir distancias, profundidades, y alturas, comos veras en el lib. 2. Planime-
tria, trata de medir lo superificial de los cuerpos de qualquiera suerte que sea. En este genero entra
el medir campos, ó heredades para saber la quantidad de hanegas de pan que en ellas se pueden
sembrar, como trata el 3 lib. Stereometria, trata de medir las cosas segun su largor, y anchor, y pro-
fundidad. En este genero se incluyen las medidas de lo mazizo de los cuerpos, de qualquiera suerte,
o forma que vengan, como en el lib. 4 se vera” (my emphasis).
² Perez de Moya 1573, 6: “Y porque con mayor fundamento se pueda desto disputar, y dar razon:
pondremos primero tres geeneros de principios, sobre que esta arte haze su fundamento. Que son
Diffiniciones, Peticiones, y Comunes sentencias, siguiendo en ello la orden que pone Euclides” (my
emphasis).
³ Bullant 1562, I, 3: “il m’a semblé n’être hors de propos de pratiquer ce petit traité, contenant
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of his 1561 treatise on gnomonics (which his practical geometry aimed to intro-
duced from the second edition), artisans are described as (or related to) people
who make use of the compass (“artisans et gens de compas”).¹ Given the con-
tent of his treatise, which mainly deals with instrumental constructions of lines
and figures, even if he does include a small part on surveying practices, it is
clear here that he has in mind a constructive type of geometry, as described
by Tartaglia as the second main part of practical geometry. Although Charles
de Bovelles, in his 1547 Geometrie practique (or Livre singulier et utile touchant
l’art et pratique de Geometrie in its first edition from 1542) did not clearly distin-
guish practical geometry from theoretical geometry, and did not as such identify
theoretical geometry with Euclidean geometry, he offered a description of prac-
tical geometry similar to that of Bullant in his versified address to the reader.
He then addressed his work to those “who seek the measures, and quantities
of lines and figures, and of all bodies by the art of geometry, as well as sev-
eral points and secrets of industry found most notable in this art” and “who
bring their knowledge into effect”, inviting them to use the geometer’s instru-
ments (the set-square, the straightedge and the compass), on which, he wrote,
“depend the art and practice, as well as the profit of the whole of geometrical
knowledge”.² This description of practical geometry, although relatively vague,
characterises it by its use of geometrical instruments, which includes the com-
pass (“n’oublie pas | L’esquierre droict, la reigle & le compas”),³ and by its em-
phasis on measurement (“les mesures, | Et quantitez des lignes & figures, | Et
de touts corps”), as well as by its operative and productive character (“secrets

plusieurs règles et inventions géométriques, sans parler de leurs spéculations et théoriques, ainsi
qu’a fait Euclide. Pour autant qu’elles ne peuvent être si familières aux artisans, comme elles sont
aux gens doctes, et plus curieux”.
¹ Bullant 1562, II, 4: “Et après avoir de long temps fait les épreuves d’iceux cadrans et horloges, ai
bien osé mettre et réduire en notre vulgaire ce petit traité, pour le profit et commodité des artisans
et gens de compas”.
² Bovelles 1547, A1v: “Ami lecteur qui cherche les mesures, | Et quantitez des lignes & figures, |
Et de touts corps, par art de Geometrie | Et plusieurs poincts & secrets d’industrie | Qui en c’est
art sont trouvez plus notables, | Et pour les gens d’esperit profitables, | Qui leur scavoir redigent
en effect: | Avoir te fault ce livre qui fut faict | Dedans Noyon par Charles de Bovelles, | Qui n’est
jamais sans faire œuvres nouvelles. | Entens le donc, & si n’oublie pas / L’esquierre droict, la reigle
& le compas: | Car de ces trois despend l’art & practique, | Et le profict du savoir Geometrique”.
³ This is supported then by an illustration of the three instruments placed underneath the address
to the reader.
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d’industrie”; “leur scavoir redigent en effect”) and its usefulness (“de ces trois
despend l’art & practique, | Et le profict du savoir Geometrique”).¹ This descrip-
tion, furthermore, resonates which the sonnet Fine wrote for Bovelles’s work,²
in which it is written that: “All artisans and Mercurial people | Who desire to
find new secrets | To measure need to have the practice [of geometry] | above
all arts”.³

In Jacques Peletier’s De l’usage de géométrie (1573), the distinction between
theoretical and practical geometry is situated rather between the “elementary
geometry” (geometrie elementaire) of Euclid and the “geometry put into use” (ge-
ometrie usagere), which we may call here ‘applied geometry’⁴, of Archimedes,
Apollonius and Ptolemy,⁵ and of all those authors who “ingeniously conjoined
the art with experience”.⁶ The type of geometry attributed to geometers such as

¹ On the aim and scope of Bovelles’sGeometrie practique, see Oosterhoff 2014, Oosterhoff 2017 and
Brioist 2021.
² Bovelles 1547, 2r: Rhythmus circularis, Orontianus. Fine assisted with the printing of Bovelles’s
work by engraving some of the figures and by supervising the printing of the text, as indicated in
the Latin preface. Bovelles 1547, 2r: “(…) Orontius Regius Mathematicus (…) Duo protinus ingenuè
spopondit. se quidem cum primis daturum operam, ut aereis tipis invulgata, plurimis esse visui:
figurarum quoque quas ibidem frequentius inscripsi, futurum ligneis in tabellis pictorem. Necnon
(quod praecipuum est) adversum mendas observaturum vigiles praeli excubias”.
³ “Tous artisans et gens mercuriaux, | Qui ont désir trouver secrets nouveaux, | De mesurer faut
qu’aient la pratique | Sur tous les arts”. Interestingly, this sonnet was taken up in Bullant’s Petit
Traicté d’horologiographie et geometrie pratique (Bullant 1562, I, 4), without the acknowledgement
of Fine’s authorship, as was the illustration of the set-square, straightedge and compass placed
below it, which was originally included in Bovelles’s treatise below his versified address to the
reader (Bovelles 1547, A1v).
⁴ The term ‘applied’ is used here in the sense that such knowledge would entail the use or ap-
plication of general principles of geometry in order to solve concrete problems (in astronomy or
mechanics or even in a more advanced geometry) without being reduced to a utilitarian scope,
as would a type of geometrical knowledge properly aimed at craftsmen, as this term will be used
below.
⁵ It should be noted that the main criteria of distinction between Euclid, on the one hand, and
Archimedes and Ptolemy, on the other, in Peletier’s commentary on Euclid was the fact that the first
arranged the propositions of geometry according to a properly ordered system, while the others
did not astrain themselves to this rule. Peletier 1557, 12: “Ex utrisque Euclides Elementa Geometrica
contexuit, ut operi vicissim subserviant, ordine quidem concinniori quàm ante illum quisquam: licet
neque Archimedes, neque Ptolemaeus, neque ullus antiquorum se ordini astrinxerit”.
⁶ Peletier 1573, 3r: “Et de ma part je suis bien loing de l’opinion de ceux qui n’apellent Geometrie
sinon celle Elementaire, traitée par Euclide, non pas celle usagere d’Archimede, d’Apoloine, de Tole-
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Archimedes represents here a more advanced and more speculative type of “ap-
plied geometry” than that which is relevant to craftsmen and which is properly
utilitarian, as was the major or higher computational practical geometry that
was distinguished by Tartaglia from its minor or lower pendant in the General
trattato de numeri et misure.¹

1.5. The hybrid status of medieval practical geometry

In spite of this association between practical geometry and the use of geome-
try in the activities of surveyors and artisans, it is important to note that practi-
cal geometry, in the form it was given in the medieval Latin treatises by scholars
such asHugh of Saint-Victor, was in fact situated somewheremid-way in its con-
tent, format, style and addressed audience between what we could call manuals
of properly “applied” or “professional” geometry, which were aimed to be use-
ful to specific kinds of readers among craftsmen (e.g. surveyors, merchants or
barrel gaugers),² and the scholarly treatises on geometry, notably translations

mee & des autres auteurs excellens qui ont si ingenieusement conjoinct l’artifice avec l’experience” (my
emphasis). It may be noted that the “applied geometry” of Archimedes, Apollonius and Ptolemy in
the fields of mechanics, astronomy, cartography, gnomonics and in the resolution of complex geo-
metrical problems, which Peletier distinguished then from Euclid’s “elementary geometry”, is much
more advanced and by many aspects more theoretical than the teaching of surveying precepts that
constituted the core of medieval ars mensurandi. Yet, it concords with the image of Archimede as
associated with “fertility and invention”, and as the model of engineers and architects, as demon-
strated by E. Knobloch (in Knobloch 2005). Moreover, the types of problems dealt with in the De
usu geometriae (see infra, §1.9 ff.) shows that Peletier considered the knowledge of the surveyors
as somewhat connected to the more advanced applications of geometry in their aim and epistemo-
logical status.
¹ See supra.
² unlike the ‘applied’ geometry or geometrie usagere attributed to Archimedes, Apollonius and
Ptolemy by Peletier, in his De l’usage de geometrie.
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and commentaries of Euclid’s Elements.¹ The former, such as the manuscripts of
the medieval Italian abbacus tradition (which were primarily intended for the
education of sons of merchants), agrimensorial treatises or even the few manu-
als written by master masons,² mostly corresponded to booklets written in the
vernacular which contained a non-systematic collection of numerous problems
that represented a variety of different cases on determinate and concrete quan-
tities and set in specific contexts (real or fictitious).³ Within these texts, the com-
putation, measuring or construction procedures were generally taught directly
through the examples as a set of direct instructions or “recipes” with little or
no general expression and demonstration of the rule.⁴ Euclid’s Elements, by con-
trast, represented by essence (despite certain transformations made to the text
throughout its medieval history⁵) an abstract consideration of the properties of
geometrical objects, numbers, ratios and proportions, in which geometrical ob-
jects bear no specific dimensions and is dealt with separately from numbers and
from any reference to instruments or to the material world, and within which
the knowledge of magnitudes and of geometrical constructions is carried out
demonstratively within propositions that are axiomatically ordered and derived
from a set of abstract definitions and universal principles.

Latin medieval practical geometry treatises stand mid-way between these
two textual traditions on the level of abstractness and generality. Even if they
dealt with measuring techniques and artisanal practices, they were generally
written in Latin by scholars, school masters and university professors and pre-
sented textual divisions and a level of generality more proper to scholarly trea-
tises. They were also often bound in large mathematical compendia that would
make them impractical to use on the field to solve concrete measuring prob-

¹ Beaujouan 1975, Victor 1979, 42-53 and L’Huillier 1994. See also Morel 2020 for the case of ge-
ometria subterranea, or geometry of the mines, which can be considered as a particular genre of
practical geometry.
² Shelby 1972, Beaujouan 1975, Homann 1991, 7-18, Zaitsev 1999, Høyrup 2014.
³ On the distinction between real (or genuine) and fictitious problems in the manuscripts of the ab-
bacus tradition (mostly concerned with commercial arithmetic, but which also contained problems
of applied geometry), see Van Egmond (1980, 20).
⁴ On the content, style and scope of abbacus treatises, see Van Egmond (1980, 15-26) and Høyrup
(2007, 27-44).
⁵ On the medieval Latin Euclidean tradition, more generally, see Murdoch 1971, Folkerts 1980 and
Busard 2005, 1-40.
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lems.¹ Hence, this textual tradition, which (as expressed by D. Raynaud²) held a
marginal status with respect to both professional and scholarly geometry, dealt
with a type of geometry that may itself be regarded as a hybrid of theory and
practice in the sense that it offered a theoretical teaching on a practical form of
knowledge.³

1.6. The development of practical geometry in the pre and early
modern era

Because of this intermediary status between applied or professional geom-
etry and theoretical geometry and because of the lack of a canonical or stan-
dard textual reference (as in the medieval tradition which developed from Sac-
robosco’s De Sphaera),⁴ the medieval Latin practical geometry tradition was
highly multiform, presenting variations from one text to the other in the list of
covered topics and on the types of problems that were dealt with or measuring
techniques that were taught (notably between instrumental and computational
procedures).⁵ Throughout the Renaissance and the early modern period, the
content, style, structure and aim of practical geometry treatises continued to
evolve, coming to include an even more diverse group of topics, from the mak-
ing and use of terrestrial and astronomical measuring instruments to the con-
struction of complex curves, including also elements of algebra, trigonometry,
engineering, astronomy, artificial perspective and certain Euclidean principles
and propositions (directly drawn from editions of Euclid).⁶ Certain practices
which could be have been beforehand placed on the side of theoretical geom-

¹ L’Huillier 1994.
² Raynaud 2015, 19.
³ Beaujouan 1975, Victor 1979, 42-53, L’Huillier 1994.
⁴ On the Sphaera tradition in the middle ages and in the early modern period, see Thorndike 1949
and Valleriani (ed). 2020.
⁵ On the diversity of medieval Latin practical geometry, see Victor 1979, 2, 17-18 and 29-30 and
Moyon 2008, 144.
⁶ On the multiformity of practical geometry and on the diversity of definitions of practical geom-
etry in the early modern period, see Bennett 2002, Guyot and Métin 2004, Knobloch 2005, Raynaud
2015, 12-14 and Axworthy 2016, 250-262. See also Johnston 1996.
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etry (notably the construction of geometrical figures on sand boards¹ or with
the straightedge and compass when studying or teaching Euclid’s propositions)
would eventually be regarded as specifically belonging to a practical form of
geometry,² being associated to a non-demonstrative and purely instrumental
and concrete approach to the construction of figures, as represented notably by
the constructive geometry used by artisans (as shown, for instance, in Durer’s
1525 underweysung der Messung).³

This evolution had many factors, besides the preexisting multiformity of the
medieval tradition, among which the invention of the printing press in the fif-
teenth century, which enabled a wider circulation of mathematical texts, the
publication of newly discovered ancient geometrical treatises such as Pappus’
Mathematical Collection and the creation of new pedagogical institutions and
academies which gave a larger place to the teaching of mathematics, and to
practical mathematics in particular within the mathematical curriculum (e.g.
the Collège Royal in Paris, the Jesuit Collegio Romano or even Gresham Col-
lege). It was also motivated by growing interests in the practical and technical
applications of geometry to the resolution of concrete problems in the mixed
sciences such as mechanics and astronomy (for instance, by professors of the
university of Padua), to which should be added a more explicit demand for ge-
ometrical solutions in professional contexts,⁴ all of which encouraged (and, for
some of these factors, was in turn encouraged by) the publication of new works
of practical geometry in Latin and in the vernacular.

As a category of pre- and early modern mathematical literature, practical

¹ See the preface to Johannes de Tinemue’s commentary on Adelard’s translation of Euclid, in
Busard 2001, 32: “Instrumentum vero demonstratoris est radius et mensa cum pulvere”.
² This appears, for example, through the fact that the instrumental performance of Euclid’s con-
struction was taught by Clavius, in his commentary on Euclid’s Elements (first published in 1574),
within sections entitled Praxis. On these sections, see infra, §1.6.
³ On the difference between practical geometry as related to the applications of geometry in the
artisanal practices and practical geometry as related to surveying practices (which was primarily
called “practical geometry”), see Knobloch 2005. See also Shelby 1972 for the medieval tradition.
⁴ See, for instance, the use of surveying for mining, which led to the development a specific kind
of practical geometrical knowledge, called in Latin geometria subterranea. On this topic, see notably
Morel 2020. T. Morel (in Morel 2017) showed how a greater demand for a proper teaching of Euclid’s
Elements adapted to the geometry of the mines was made explicit in the sixteenth century. On
the use of Euclid in other professional contexts, notably for the training of artists, architects and
engineers in the sixteenth century, see Camerota 2006 and Brioist 2009b.
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geometry treatises certainly maintained a few essential characteristics, which
(besides the acknowledgement that they belong to the genre of practical ge-
ometry in their title¹) enabled to distinguish them from works dealing with a
speculative type of geometrical teaching (as represented in particular by the ver-
sions of Euclid’s Elements which claimed to be philologically accurate²). Among
these characteristic features are first an emphasis on measurement procedures
and on the construction and use of instruments to measure magnitudes or to
construct or divide figures, and with this (notably the focus on measuring), a
quasi-systematic numerical treatment of magnitudes and an appeal to computa-
tions, which implies an admission of approximation. In relation to this, is often
expressed the explicit goal to propose procedures that are quick, easy, accessible
and even pleasant to perform. To this, may be added the fact of placing the teach-
ing of geometry within a socially determined context (by implicitly or explic-
itly pointing to pedagogical or professional uses of the taught procedures), an
openess to methodological variety and/or novelty (by displaying multiple and
sometimes entirely new modes of resolution of problems, either instrumental,
computational or sensed-based) and, when offering a more general teaching on
geometrical properties, the fact of privileging empirical over logical or rational
modes of inference and demonstration.³

In other words, these treatises present geometry as a form of mathematical
knowledge which is meant to be used, but also which is meant to be learned
and constituted by the practitioner concretely and intellectually (in the mode

¹ This also the case of the treatises such as Johannes de Muris’ De arte mensurandi, in which the
title (or incipit) identifies the treatise as dealing with the object traditionally attributed to practical
geometry, that is, the art of measuring. As pointed out by S. J. Victor (in Victor 1979, 15), Robert
Kilwardby, in the De ortu scientiarum (Judy 1976, 29-30), used the names ars mensurandi and ars
mensoria to designate a type of knowledge which corresponds in its content to the classical notion
of practical geometry, as it deals with the measure of lengths, areas and volumes.
² This would, for instance, be represented by Zamberti’s 1505 Latin translation from the Greek,
as suggested by the title: “Euclidis megarensis philosophi platonici mathematicarum disciplinarum
Ianitoris: Habent in hoc volumine quicunque admathematicam substantiam aspirant: elementorum
libros XIII cum expositione Theonis insignis mathematici, quibus multa quae deerant ex lectione
graeca sumpta addita sub nec non plurima subversa & praepostere: voluta in Campani interpretatione:
ordinata digesta & castigata sunt” (my emphasis).
³ D. Raynaud (in Raynaud 2015, 16-18) offers a description of the characteristics of practical ge-
ometry which is different by several aspects, though not in contradiction with the one presented
here.
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of a quoad nos form of knowledge), being susceptible thereby to be augmented
and revised. This model thus clearly constrasts with the type of geometry rep-
resented by Euclid’s Elements, conceived as an axiomatically-ordered system of
propositions, since this work may appear as a finished and digested scientific
synthesis of geometry, organised and formulated so as to filter out any explicit
intention of the author or consideration of the reader (in the mode of a knowl-
edge secundum se).¹

Yet, from one treatise of practical geometry to another, the form and degree
of importance which each of these characteristic features took, just as the list
of topics dealt with in practical geometry treatises, could vary, and sometimes
to a great extent. This diversity inherent to the pre- and early modern practi-
cal geometry tradition actually embodies the equivocity of the notion of praxis,
from which was derived the very notions of practical knowledge and of prac-
tical geometry (or of practical mathematics more generally). The term praxis,
which overall means action, had indeed in Greek Antiquity a technical, an epis-
temological, but also an ethical meaning, which explains the equivocity of the
notion of practice and practical knowledge, even in contemporary English.This
equivocity remained to a certain extent when applied to geometry in the pre-
and early modern era, since the notion of praxis could be understood in var-
ious ways and according to different levels of abstraction when dealing with
magnitudes, standing for the concrete operations of landmeasurers as much
as for the resolution and demonstration of abstract geometrical problems, but
also, less directly, to a form of vita activa in which the knowledge of geome-
try is valued for its utility in all aspects of human life, including moral and
intellectual pursuits such as theology and philosophy.² Hence, throughout this

¹ On the difference between practical and theoretical knowledge according to the difference be-
tween knowledge quoad nos and secundum se in Renaissance philosophy of mathematics, see Hi-
gashi 2018, 113-120.
² This was, for instance, the case in Hugh of Saint-Victor’s work, in which practical geometry is
used in the estimation of the dimensions of Noah’s ark. See Victor 1979, 32-34, and more generally
on the speculative aims of practical knowledge in connection with the distinction between theory
and practice in the middle ages, see Beaujouan 1975, Evans 1976 and Zaitsev 1999. We can also find
this more philosophical and moral orientation of practical geometrical knowledge in Bovelles’s
Geometrie practique, which teaches, in chapter 7, as indicated by the title of the chapter, uses of
geometry for the comprehension of the sound and harmony of bells, the pace of horses, carriages
and charges, fountains, the struture of the cosmos on the dimension of the human body (Septiesme
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evolution, the definition of the proper object, methods, finality and epistemo-
logical status of practical geometry, and its relation with theoretical geometry,
was in constant reassessment, widening from within the spectrum delimited
by applied or professional geometry, on one end, and by theoretical geometry,
on the other.

1.7. The authors and addressed audience of sixteenthcentury
practical geometry treatises

It is important to note furthermore that, just as, in the middle ages, practical
geometry treatises were written by scholars or professors, in the sixteenth cen-
tury, when they were mostly published in print, such works were often written
by university and college lecturers, as well as by humanists and court artisans,
among whom several also published an edition, translation or commentary of
Euclid’s Elements.¹ This was the case of Luca Pacioli,² Oronce Fine,³ Niccolò

Chapitre, Du son et accord des cloches, et des alleures des chevauls, chariots, & charges: des fontaines:
& encyclie du monde: & de la dimension du corps humain). This chapter actually offers a greater
number of topics such as the structure and construction of all sorts of mills, the motion of the
physical elements, or the structure and number of the orifices of the human body.
¹ The very fact that the authors of practical geometry treatises were often the same as those who
wrote an edition, a translation or a commentary on Euclid’s Elements, or had a comparable social
and professional status as the latter, would preclude the interpretation of the textual interactions
between the sixteenth-century traditions of practical geometry and of Euclidean geometry as re-
sulting from the existence, between their representatives, of a “trading zone”, in the sense defined
by Pamela Long (2011, chapter 4) on the basis of Peter Galison’s analysis of the relations between
the different “subcultures” of physics (Galison 1999).
² Pacioli, Summa di arithmetica, geometria, proportione et proportionalità. Venice: Paganino de Pa-
ganini, 1494 and Euclidis megarensis philosophi acutissimi mathematicorumque omnium sine con-
trouersia principis opera a Campano interprete fidissimo translata. Venice: Paganinius, 1509.
³ Fine, In sex priores libros Geometricorum elementorum Euclidis Megarensis demonstrationes. Paris:
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Tartaglia,¹ Jacques Peletier,² Elie Vinet,³ Pierre Forcadel,⁴ Christoph Clavius⁵
and Jean Errard.⁶ By publishing a treatise of practical geometry, these authors
may have wanted to display the extent of their geometrical expertise and gain
thereby a greater visibility outside the university, attracting potential patrons.
They may also have aimed to complete their pedagogical programme by offer-
ing their students a complementary teaching on geometry while offering an
insight into the more concrete profit that could be gained from the study of
geometry, besides knowledge and intellectual pleasure, or to offer an alterna-
tive means to learn geometry, that is, by familiarising oneself with the most
fundamental geometrical notions at the same time as learning about the use-
ful applications of geometry in a quicker, pleasant and more accessible man-
ner. These practical geometry treatises, which were quite often written and
published in the vernacular,⁷ had, in this framework, a pedagogical, but also
a recreational purposes, satisfying the curiosity of elite amateurs on the vari-
ous uses and power of mathematics in various parts of concrete and intellectual
life. These works were thus addressed, or at least would have been of interest

S. de Colines, 1536 and Liber de geometria practica, sive de practicis longitudinum, planorum et solido-
rum. Strasburg: G. Messerschmidt, 1544 (first published in the Protomathesis, Paris: G. Morrhe and
Jean Pierre, 1532); De re et praxi geometria libri III. Paris, G. Gourbin, 1556.
¹ Tartaglia, Euclide Megarense philosopho, solo introduttore delle scientie mathematice. Venice: C.
Troiano, 1543 and General trattato di numero e misure. Venice: 1556-1560.
² Peletier, In Euclidis Elementa Geometrica Demonstrationum Libri sex. Lyon: J. de Tournes and G.
Gazeau, 1557 and De usu geometriae. Paris: Gilles Gourbin, 1572; De l’usage de geometrie. Paris:
Gilles Gourbin, 1573.
³ Vinet, Definitiones Elementi Quincti et Sexti, Euclidis. Bordeaux: S. Millanges, 1575 and
L’Arpenterie. Bordeaux: S. Millanges, 1577.
⁴ Forcadel, Les Six premiers livres des Elements d’Euclide. Paris: J. de Marnef et G. Cavellat, 1564; Les
septième, huictième et neufième livres des Élémens d’Euclide . Paris: C. Périer, 1565 and La Practique
de la géométrie d’Oronce Finé, dauphinois, traduicte par Pierre Forcadel, du latin en français. Paris: G.
Gourbin, 1570.
⁵ Clavius, Euclidis Elementorum libri XV. Accessit XVI. De Solidorum Regularium comparatione.
Rome: Accoltus, 1574 and Geometria practica. Mainz: Hierat, 1604.
⁶ Errard, La Géométrie et practique générale d’icelle. Paris: David le Clerc, 1594 and Les six premiers
Livres des Elémens d’Euclide (…). Paris: Guillaume Auvray, 1598; Les neuf premiers livres des elemens.
Paris: Guillaume Auvray, 1598.
⁷ This is however by no means representative of a systematic pattern, as practical geometry trea-
tises continued to be published in Latin throughout the sixteenth century, as shown notably by the
case of Christoph Clavius’s Geometria practica (1604).
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to a mixed or hybrid audience, from scholars and university students to learned
artisans and members of courts and government administrations.

1.8. The mutual influence of practical geometry and of Euclid’s
Elements in the sixteenth century

Partly because of a frequent overlap in authorship and context of diffusion,
the printed practical geometry tradition started to converge more sensibly from
the sixteenth century, in parts of its style and content, with the printed Eu-
clidean geometrical tradition.¹ Indeed, a certain number of practical geometry
treatises took up Euclidean material in a more recognisable and explicit manner
and offered to teach Euclidean geometrical propositions in a practical way, for
example, by translating the abstractly formulated constructions as instrumental
procedures, by demonstrating the relations of figures through computations, or
by displaying some of their concrete uses in everyday life. And certain charac-
teristics proper to the practical treatment of Euclid’s propositions, such as found
in practical geometry treatises, could also be found within coeval adaptations,
translations and commentaries on the Elements, as I will show in more detail in
the second part of this article.

As such, in their printed form, both traditions, in the sixteenth century, mu-
tually enriched each other in their content and approaches to geometry, making
the boundary between practical geometry and theoretical geometry harder to
define. In this framework, whereas the tradition of practical geometry treatises
stemming from the Latin middle ages may be considered to offer a theoreti-
cal teaching of a properly practical or applied form of geometrical knowledge,
translations and commentaries on the Elements that dealt with Euclidean con-
cepts and propositions instrumentally, numerically or in a more empirical man-
ner may be said to offer a practical teaching of theoretical geometry, both con-
tributing to the hybridization of theoretical and practical geometry in the early
modern era.

¹ The main previous studies which pointed to this phenomenon are Malet 2006 and 2012, Barany
2010, Barbin and Menghini 2014, Menghini 2015, Lee 2018.
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1.9. The epistemological implications of the practical treatment
of Euclid’s Elements in the sixteenth century

While both types of geometrical texts may therefore be regarded as hybrids
between theoretical and practical geometry in the premodern sense of these
terms and categories, the fact that Euclid’s Elements represented a canonical
source, with an overall stable argumentative structure and number of princi-
ples, propositions and books, and also that it was presented in this context as
the epitome of theoretical geometry and thus as essentially distinct from prac-
tical geometry, makes it a more obvious witness of the reshaping, by sixteenth-
centurymathematicians and professors ofmathematics, of the content and form
of geometrical knowledge in the direction of a less clear-cut distinction between
the theoretical and practical approaches to geometry. Such an approach would
promote a more hands-on, accessible, useful, socially relevant and innovative
approach to geometry and extend thereby the scope of scholarly geometry, in
its objects and methods, beyond the Euclidean framework.

This more practical reading of Euclid’s text, which is to be found both in Latin
and in vernacular translations and commentaries of the Elements, could, in the
eye of Renaissance mathematicians and humanists, be partly justified by the
common admission (based on the reports of ancient authors, such as Proclus)
that ancient Greek geometry, and thus of Euclidean geometry, held its histori-
cal origin in the practice of Egyptian measurers.¹ Moreover, it could be based
on the acknowledgment that a part of the content of practical geometry was

¹ Bovelles 1547, 3r-v: “L’art de Geometrie selon les anciennes histoires, fut jadis trouvé en Aegypte,
a cause de la riviere du Nil”; Perez de Moya 1568, 1: “Geometria, aun que puede significar mas cosas,
propriamente es Arte de medir la tierra, inventada de los Egypcianos (como refiere Strabon) por la
inundaciones que el Nilo hazia”; Merliers 1575, 1r: “Geometrie est l’art de mesurer, lequel selon les
histoires anciennes a prins son origine & commencement des Egyptiens pour la necessité des lim-
ites & bornes de leurs terres, lesquelles le Nil au temps de son desbordement couvroit de limon, en
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ultimately based on Euclidean geometry (albeit not through a direct reading of
the Elements), and perhaps also on contemporary classroom pedagogical prac-
tices as on the fact that certain medieval translations of the Elements, such as
the commentaries based on Adelard’s translation from the Arabic by Johannes
de Tinemue and Campanus, already contained certain practical features, such
as the mention of geometrical instruments (i.e. the compass) in the first two
propositions of Book I.

Even so, the fact that Euclid’s text could be dealt with in a practical man-
ner was not self-evident in the sixteenth century. Indeed, even for the math-
ematicians who acknowledged geometry (in general) as having originated in
the practice of measurers (such as Bovelles, Merliers and Clavius), the geomet-
rical knowledge represented by Euclid’s Elements was presented as having pro-
gressed beyond the more basic geometrical knowledge of surveyors and as hav-
ing evolved into a properly universal and necessary science,¹ which deals with

sorte qu’apres iceluy on ne les pouvoit plus recognoistre, qui estoit cause de confusion & de trouble:
pour à quoy remedier fut ordonné par les Roys d’Egypte, que par les prestres qui estoyent oysifz
& sans payer tribut, fut trouvé quelque art de si bien mesurer & borner les terres, que par l’annuel
desbordement du Nil ne fussent plus confondues ny troublées”; Ramus 1569, Geometria libri XXVII,
2: “geometria hunc inmodum definita sit ars benemetiendi. Nomen autem re ominata levius est. Ge-
ometria enim dicitur tanquam terrae tantum dimetiendae ars quaedam sit, quod nomen videtur in
Aegypto primum factum esse: ubi ad terminos agorrum Nili inundationibus obrutos restituendum
primum geometria adhibita sit”; Clavius 1611-1612, 4: “Geometria vero, aucotre Proclo, ab Aegyp-
tijs reperta est, ortumque habuit ab agrorum emensione. Cum enum anniversaria Nili inundatio
agrorum terminos, ac limites ita confunderet, vastaretque, ut nemo agrum dignoscere posset suum,
coeperunt Aegyptij animos ad rationem mensurandorum agrorum applicare, ut hoc modo cuilibet,
quod suum erat, redderetur. Quae quidem ratio agros metiendi, quanquam tunc temporis adhuc
rudis admodum fuerit, ac impolita, ab ipso tamen officio Geometria est appellata. γεωμετρέομαι
enim, sive γεωμετρέω idem significat quod, terram metior”. On this historical account of the origin
of geometry and its reception in the Renaissance, see Goulding 2010, xix–xx and 1-14.
¹ Bovelles 1547, 3r-v: “Apres les prebstres d’Aegypte, plusieurs autres gens scavants & de grand
engin, ont adiousté & fort augmenteé la science de Geometrie, comme Pythagoras, Archimedes, Eu-
clides, duquel le livre est a present imprimé, & par tout divulgué”; Merliers 1575, 1r: “Apres, les pre-
stres d’Egypte, plusieurs ont augmenté ledit art, & encores tous les jours par le labeur & speculation
de gens Doctes croist & enrichit: Car il n’y-a art si parfaict, que chacun jour par nouvelle invention
ne se puisse bien augmenter & mettre à plus grande perfection”; Clavius 1574, sig. b1r: “Immo vero
singulas [disciplinas Mathematicas] nequaquam summam adeptas esse perfectionem statim ab ini-
tio, sed paulatim eas ab imperfectis ad perfectiora processisse, memoriae quoque proditum est. (…)
Caeterum paulatim deinde Geometria caepta est expoliri, & non contenta suis finibus, sese ad cor-
pora etiam caelestia dimetienda convertis, tradititque principia universae Astronomiae, Perspecti-
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the properties of magnitudes per se (or with intelligible, as opposed to sensible,
magnitudes) and in a manner that is demonstrative and rational (as opposed to
empirical), and which furthermore managed to be regarded as a model for other
sciences in this respect.

For this reason, John Dee considered that the Greek designation geometria
(γεωμετρία), which literally means ‘measure of the earth’ (coming from γῆ, the
earth, and μετρέω, to measure), would be improper for this science and should
rather be calledMegetologia orMegethica (i.e. ‘discourse onmagnitude’ or ‘[doc-
trine] concerning magnitudes’, from μέγεθος, ‘size’).¹ This conception of (the-
oretical) geometry as a purely speculative and demonstrative science, dealing
with intelligible magnitudes, thus led certain commentators of Euclid, such as
Peletier and François de Foix-Candale, to filter out of Euclid’s Elements certain
modes of demonstration which they judged too empirical or mechanical to be
admitted in geometry, such as the use of superposition to demonstrate the con-
gruence of figures.² This conception was comforted by the circulation of the

vae, Cosmographiae, & alijs disciplinis quam plurimis, quae ex ipsa, veluti radices dependent. Hanc
ThalesMilesius ex Aegypto in Graeciam primus transtulisse fertur: Deinde eam insignes Philosophi,
ac Mathematici plurimis, acutissimisque demonstrationibus locupletarunt, atque exornarunt”. This
was also the discourse held by Proclus, who represented a key source of sixteenth-century scholars
on the early history of Greek geometry. Proclus 1873, 64; transl. Morrow 1992, 52: “geometry was
first discovered among the Egyptians and originated in the remeasuring of their lands. This was
necessary for them because the Nile overflows and obliterates the boundary lines between their
properties. It is not surprising that the discovery of this and the other sciences had its origin in ne-
cessity, since everything in the world of generation proceeds from imperfection to perfection. Thus
they would naturally pass from sense-perception to calculation and from calculation to reason”.
¹ Dee, in Billingsley (1570, sig. a2r-v): “This Science of Magnitude, his properties, conditions, and
appertenances: commonly, now is, and from the beginnyng, hath of all Philosophers, ben called
Geometrie. But, veryly, with a name to base and scant, for a Science of such dignitie and amplenes.
(…) The people then, by this art pleasured, and greatly relieved, in their landes just measuring: &
other Philosophers, writing Rules for landmeasuring: betwene them both, thus, confirmed the name
of Geometria, that is, (according to the very etimologie of the word) Land measuring. (…) An other
name, therefore, must nedes be had, for our Mathematicall Science of Magnitudes: which regardeth
neither clod, nor turff: niether hill, nor dale: neither earth nor heaven: but is absoluteMegethologia:
not creping on ground, and daddeling the eye, with pole perche, rod or lyne: but liftyng the hart
above the heavens, by indivisible lines, and immortall beames meteth with the reflexions, of the
light incomprehensible: and so procureth Joye, and perfection unspeakable. Of which true use of
our Megethica, or Megethologia, Divine Plato seemed to have good taste, and judgement: and (by
the name of Geometrie) so noted it: and warned his Scholers therof”.
² Peletier, 1557, Prop. I.4, 16: “Figuras Figuris superponere, Mechanicum quippiam esse: intelligere
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Greek text of Euclid’s Elements in manuscript from the end of the fifteenth cen-
tury and in print from 1533, which offered a version of Euclid’s text that was
sensibly different from some of the Latin versions translated from the Arabic
that circulated in the middle ages, including that commented by Campanus and
which corresponds to the very first version of Euclid’s Elements to come into
print in 1482. The humanist Bartolomeo Zamberti thus produced an entirely
new translation of the Elements from the Greek which intended to restore the
purity of Euclid’s text since it had been, according to him, corrupted by the pre-
vious translation from the Arabic circulated by Campanus’ commentary.¹ This
version notably left aside (as per the Greek text) the mention of the compass
included in Campanus’ text.

Hence, the fact for certain sixteenth-century translations and commentaries
on Euclid’s Elements to take up features that were characteristics of practical ge-
ometry, and this to a much greater extent and in a much more explicit manner
than in the altered versions transmitted by the medieval tradition,² contrasts

verò, id demum esse Mathematicum”. See also Peletier, 1557, Prop. I.4, 15: “Haec est vulgata omnium
Interpretum Demonstratio, si modò haec Demonstratio dici debeat. Nam si linearum figurarumque
superpositiones in probationem recipiamus, tota ferè Geometria huiusmodi applicationibus erit
referta: vixque ulla occurret Propositio, quae hac ratione non possit probari. Secunda enim iam
indè ac tertia, quas modò demonstravimus, sic probari poterant. Nam si ad datum punctum, linea
datae lineae aequalis ducenda sit: illicò translata linea ad ipsum punctum, absolutum erit negotium:
Applicatio verò quanvis superpositione sit tolerabilior, tamen in Geometria repudiatur: immò ne
lineam quidem transportare licet, ut secundum ipsius magnitudinem, Circulum describamus: quin
prius aequalis linea ducta sit. Alioqui secunda prorsus vacaret. Tum si à maiori linea, minor sit ab-
scindenda: quid aliud quàm maiori minorem superponemus, ut quod superat resecemus? Sed hoc
quàm sit à Geometriae dignitate alienum, eorum iudicio relinquo qui Demonstrationis vim & energiam
animo concipiunt” and Foix-Candale 1566, fol. 5v, Prop. I.4: “Alteram demonstrationem huic quartae
exhibere cogimur, ne praebeatur aditus, quo ulla mechanicorum usuum instrumenta in demonstra-
tiones incidant. Nam Campanus ac Theon hanc demonstrantes, triangulum triangulo superponunt,
angulumque angulo, sive latus lateri, demonstrationem potius instrumento palpantes, quàm ratione
firmantes: quod tanquam prorsus alienum à vero disciplinarum cultu reijcientes, aliam demonstra-
tionem absque figurae, anguli seu lineae transpositione, protulimus ratione elucidatam”. Cf. Foix-
Candale 1566, 6v, Prop. I.8: “Huius alteram demonstrationis partem resecavimus eò quòd trianguli
transpositione uteretur, quod quidemmœchanicum spectat negotium à vera mathesi alienum, posita
anguli qui ad z hypothesi ex quarta huius sumpta” (my emphasis). On this issue, see Mancosu 1996,
29-31, Loget 2000, 171-177, Palmieri 2009, 474-476, and Axworthy 2018.
¹ Høyrup 2019.
² For instance, the Latin versions of Euclid’s Elements circulating in the middle ages only rarely
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with this image of Euclidean geometry as a purely rational science of intelli-
gible magnitudes, in other words as a properly theoretical form of geometry,
contributing therefore to transform the conception of the science of geometry
such as represented by Euclid’s Elements.

1.10. Justifications and motivations for the practical treatment of
Euclid’s Elements

Looking again at the introductions of sixteenth-century practical geometry
treatises in which Euclidean geometry was held as representative of theoretical
geometry, we do not only find a clear distinction between the two part of geome-
try, but also an assertion of their connection, in the sense that Euclid’s Elements
would correspond to the necessary introduction to practical geometry, enabling
to demonstrate the causes on which the procedures taught by practical geome-
try are founded. Practical geometry would, in turn, show the profit that may be
obtained from the study of geometry in general, or of Euclid’s theoretical geom-
etry more specifically, by teaching its various uses and utility in everyday life.
This is clearly asserted by Fine in the introduction of his Geometria practica (or
second book of his 1532 Geometria), in which he presented Euclid’s geometry
as the theoretical rudiments that one must learn in order to obtain the fruit that
is to be reaped from the study of geometry, that is, the knowledge of the mea-
sures of lines, surfaces and bodies and of the use of geometrical instruments.¹

referred to instruments (this is the case in the versions based on Adelard’s translation, i.e. Robert de
Chester’s redaction or Adelard II in Prop. I.1; Johannes de Tinemue’s commentary or Adelard III in
Prop. I.1-2 and in the commentary of Campanus, Prop. I.1-2). They also practically never made ref-
erences to concrete applications (an exception is found in Johannes de Tinemue’s commentary or
Adelard III, Prop. X.8 (= X.12), as noted in Murdoch 1968 and confirmed in his response to G. Beau-
jouan, in Beaujouan 1975, 480). Even if specific numbers (instead of lines representing numbers)
were used in the context of Book V, which deals with the theory of ratios and proportions applied
to magnitudes (to show that the properties of ratios, even if treated with separately by Euclid for
numbers and for magnitudes, was common to both), and in the arithmetical books, numerical val-
ues are not directly applied to geometrical lines and figures, nor are computational methods used
to measure and compare magnitudes.
¹ Fine 1532, 64r: “Duo sunt, optime lector, quæ in omni disciplina, studiosis omnibus solent esse
non iniucunda. unum est, facilis in disciplinam introductio: qua & via doctrinæ, & sensus eius-
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The fact that the knowledge of the theoretical principles of geometry is neces-
sary to correctly apprehend the precepts of practical geometry was also held
by Reisch¹ and Chauvet.² Even in those texts that did not clearly mention the
theoretical pendant of practical geometry, such as those of Jean de Merliers and
Giovanni Pomodoro and Christoph Clavius, Euclid’s Elements was indirectly
or implicitly acknowledged as the theoretical foundation of practical geometry.
This was indicated in the title of Pomodoro’s book³ and, in the texts of Merliers
and Clavius, through a frequent or quasi-systematic reference to the relevant
propositions of Euclid,⁴ as in Fine’s practical geometry.⁵ A similar system was

dem universus aperitur. Reliquum esse videtur, collectus ex ipsa disciplina fructus, susceptorum
laborum compensator gratissimus. Præmissis itaque generalibus ipsius Geometriæ rudimentis, ad
elementorum Euclidis, & succedentium nostrorum operum intelligentiam isagogicis: consequens nobis
visum fuit, universam Geometriæ subnectere praxim, hoc est, linearum, superficierum, & corporum,
ex demonstratis Euclidis elementis, ostendere mensuram”. See also the title of Fine’s book on prac-
tical geometry: ”Liber secundus Geometriæ, de practicis longitudinum, planorum & solidorum, hoc
est, linearum, superficierum, & corporum mensionibus, alijsve mechanicis, ex demonstratis Euclidis
elementis corolarius: ubi et de quadrato geometrico, et virgis seu baculis mensorijs” (my emphasis).
¹ Reisch 1504, r2r: “nam tibi in prioribus geometriae generaliora principia, paucasque eiusdem
theorias proposui. Iam vero quia te vigilantissimum, eiusque percupidum sentio: de metiendi modo
pauca subiungere aenitar”.
² Chauvet 1585, 1r: “pour autant que la Theorique est suffisamment traictée & demonstrée aux El-
emens d’Euclide, nous en ferons un tacet, & renvoirons le nouveau aprentif à iceux principes, sans
lesquels il ne peult parvenir à la vraye cognoissance de la Geometrie Pratique” (my emphasis).
³ Pomodoro 1599, title page: Geometria prattica, tratta dagl’Elementi d’Euclide et altri Auttori (…)
Nella quale si vede in 50 Tavole di Rame scolpito tutto quello che ad un buon Giometra s’appartienne
di sapere et porre in uso. Opera non meno uttile che necessaria, a’ Misuratori di terreni, di fabriche, et
altri simmili, ma’ in’oltre ancora a’ Geografi, Cosmografi, Architetti Civili, et Milittari, a’ Bombardieri,
Soldati privati, a’ Capitani, Maestri di Campo, et a’ qual si Voglia altra persona Virtuosa.
⁴ See, for example, Merliers 1575, 3v: “Pour sçavoir le contenu d’iceluy, cest à dire combien il
contient de perches quarrées, ou de mesures quarrées: multiplions 8 par 6 ou 6 par 8: car il en sera
produict un mesme nombre par la seziéme proposition du septiéme livre des Elemens d’Euclide, qui
dict: Si deux nombres se multiplient l’un l’autre, les engendrez d’iceux seront egaux nous aurons 48
perches quarrées pour le contenu dudict Parallelogramme. Ce moyen est prins de la trente-siziéme
proposition du premier livre des Elemens d’Euclide, qui dict: Que tous Parallelogrammes, qui sont en
bases egales & en mesmes Paralleles sont egaux ensembles”. and Clavius 1604, 65-66: “Ex vertice
montis, vel turris per duas stationes in aliqua hasta erecta, vel in duabus fenestris turris, quarum
una supra aliam existat, factas, è quibus signum aliquod in Horizonte videri possit, altitudinem
ipsius montis, aut turris metiri. (…) Quia vero ex schol. propositionis 4 lib. 6 Euclid. est”, or 175-177:
“De area triangulorum (…) ex coroll. prop. 4 lib. 6 Euclid” (my emphasis).
⁵ Fine 1532, 65r-v: “Qualiter in plana terrestri superficie iacentes lineae rectae, per ipsum quadra-
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followed in the Géométrie et practique générale d’icelle of Errard, who did not
clearly distinguish nor define practical geometry and theoretical geometry, but
who asserted in his address to the reader the relevance of certain Euclidean
demonstrations for his teaching of practical geometry.¹

In Tartaglia, Perez de Moya and Peletier, the connection between theoretical
(Euclidean) geometry and practical geometry took the form of a more systemic
interdependence in the sense that, for Perez de Moya, theoretical or specula-
tive geometry (which is explicitly identified with Euclidean geometry) would
“consider quantity and proportion through a speculation of the mind” “in order
to find the cause of the effects of practical geometry” and practical geometry
would aim to “put into effect or implementing the reasons on which the mind
reflects in theoretical geometry”, as if they properly shared a common aim and
could not be considered without the other.² As for Peletier, he wrote in his pref-
ace to De l’usage de geometrie (1573), when talking about theory and practice
in general (for which geometry is then taken as a particular example), that nei-
ther theory, nor practice can be brought to perfection without the other: “they
are two parts that are so indebted to each other that nobody could understand
any art in its perfection without their mutual agreement and relation”.³ When

tum metiantiur geometricum. (…) Quoniam angulus AEB, aequus est angulo DAF, nempe alterno,
per 9 primi elementorum Euclidis (…) & similis sunt rationis, quae aequalibus angulis latera subten-
duntur, per quartam sexti elementorum eiusdem Euclidis”. (My emphasis).
¹ Errard 1594, A2v: “J’y ay entrelassé quelques demonstrations des elements d’Euclide (comme le
corollaire I du chapitre 3 du deuxieme livrez: le Corollaire 4 du chapitre suyvant, & quelques autres,
que j’ay estimé necessaires, pour la pratique parfaicte de la Geometrie) la duplication du cube &
division de la sphere, avec ce qui en depend, y sont demonstrees (combien que la pratique en soit
mechanique) autant facillement & exactement qu’il s’est peu faire jusques à present” (my emphasis).
See Métin 2016, I, 236-237.
² Perez de Moya 1573, 5: “La Theorica, ò Speculativa es aquella, que por hallar la causa de los effec-
tos de la Practica, considera la quantidad, y proporcion con una especulacion del entendimiento, de
lo qual trato Euclides compendiosa y cumplidamente (…). La Practica trata, de poner en effecto, ò
en obra las razones que el entendimiento en la Theorica Speculo”. Cf. Tartaglia 1556, III, 1r: “Delle
specie della Geometria. Le specie principali della geometria sono due, delle quali l’una è detta the-
orica, & l’altra pratica. La theorica è quella che per investigare le propinque cause de gli effetti di
quella, considera, & guarda le quantita, le proportioni, & le misure di quelle, con una speculatione
di mente, & di questa abondantemente ne parla, & tratta Euclide Megarense in dodici libri”.
³ Peletier 1573, 2r: “Entre les hommes de sçavoir & d’experience, Monseigneur, a esté commune-
ment douté, laquelle doit estre preferée selon l’ordre de nature & de dignité, ou la Theorique, ou la
Practique. De laquelle controverse est difficile de trouver l’issue. Et n’estant icy le lieu de raisonner
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illustrating this through the example of geometry, he stated that, within it, one
may find both demonstrations and operations, for which the geometrie usagere
of Archimedes, Apollonius and Archimedes should be, as much as Euclid’s ge-
ometrie elementaire, properly considered as belonging to geometry.

But so as to not enter too deeply into this too general discourse, I would only take as
an example of this argument our geometry, which brings an infinite pleasure through
the contemplation of such a beautiful arrangement, [a contemplation that is] so well en-
dowed with infallible, necessary and impugnable causes and reasons, and which brings,
on the other hand, the greatest convenience in the practice and handling (exercice et
maniement). (…) And, as for me, I am far from the opinion of those who only call geom-
etry that which is elementary, and with which Euclid deals, and not the geometry put
into use (celle usagere) of Archimedes, Apollonius, Ptolemy and of the other excellent
authors who have so ingeniously conjoined the art with experience.¹

Where Peletier goes beyond Trtaglia and Perez de Moya (and a fortiori be-
yond Reisch, Fine, Chauvet and all the other authors mentioned here) in his
description of the connection between theoretical and practical geometry is
that he presented both as possessing a speculative and an operative or practical
part. Hence, when describing geometry in general, he implies this by saying
that all human endeavors are governed by “measure and proportion”,² that is,
the main objects that geometry investigates in a demonstrative manner, and
that in all speculative contemplation there is an operative part and an intention
of application.

d’une part & d’autre, il me suffira de dire que ce sont deux parties qui se rendent tel devoir ensemble,
qu’on ne sçauroit entendre un artifice en sa perfection, sans la convenance & rapport de l’une avec
l’autre” (my emphasis).
¹ Peletier 1573, 2v-3r: “Mais pour n’entrer point si avant en ce discours trop universel, j’employeray
pour exemple de cet argument nostre seule Geometrie, laquelle apporte un infiny plaisir en la con-
templation d’une si belle ordonnance & si bien garnie de causes & raisons infaillibles, necessaires,
irrepugnables: & d’autre part une commodité amplissime en l’exercice & maniment. (…) Et de ma
part je suis bien loing de l’opinion de ceux qui n’apellent Geometrie sinon celle Elementaire, traitée
par Euclide, non pas celle usagere d’Archimede, d’Apoloine, de Tolemee & des autres auteurs ex-
celles qui ont si ingenieusement conjoinct l’artifice avec l’experience”.
² This assertion was already set forth by Peletier in his commentary on Euclid’s Elements. Peletier
1557, sig. 4r-v: “Nihil enim in rebus humanis ferè aliud est quod expediat aut iuvet, praeter ordinem
& proportionem: id est, in omnibus moderationem. ubique igitur latet vis quaedam Geometriae”.
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For there is no endeavor (negoce), great or small, which is not either openly or secretly
sustained and as animated by measure and proportion, the two essential parts of geom-
etry and, on the other hand, there is no knowledge (intelligence) so abstruse that it does
not take on and is not endowed with an intention of effect and application (intention
d’effect & d’execution).¹

For this reason, the intention of Peletier’s book would be to conjoin theory
and practice.

For these reasons, (…) although I have entitled this book “On the use of geometry”, I
could not, or should not, do otherwise than first provide the purely theoretical principles
before dealing with the matter indicated by the title, as it is my main goal to make these
two parts conjoined with one another.²

Although Peletier says here that the theoretical part of geometry is dealt with
in the first section of the book (which contains a list of Euclidean definitions
taken from Book I), and that the practical part of geometry will be presented
afterwards, the content of his treatise actually shows that, within the very part
dedicated to practical geometry, Peletier attempted to bring together theory and
practice.

This would, in a way, correspond to the manner in which Archimedes, Apol-
lonius and Ptolemy, according to Peletier, would have “ingeniously conjoined
the art with experience” in their geometrical work. In Peletier’s De usu geome-
triae (or De l’usage de géométrie), this first takes the form of a properly prac-
tical treatment of Euclidean problems (which mainly corresponds to the fact
of leaving aside Euclid’s demonstrations and of teaching how to perform the
construction instrumentally or through computations),³ to which are added el-
ements proper to the more traditional notion of practical geometry as an art of

¹ Peletier 1573, 2v-3r: “Car il n’y a negoce, pour grand ou petit qu’il soit, qui ne se trouve ou
apertement ou couvertement entretenu & comme animé de mesure & de proportion, deux parties
essentielles de Geometrie: de l’autre part, n’y a intelligence si abstruse, qui ne soit revetue & incor-
porée d’une intention d’effect & d’execution”.
² Peletier 1573, 3r: “Pour ces causes, Monseigneur, combien que j’aie intitulé ce Livre, de l’usage de
Geometrie, si non pouvoy-je, ny devoy faire autrement que je ne premisse les Principes purement
Theoriques, avant qu’entrer en matiere de ce que le Titre propose: estant mon principal but de rendre
ces deux parties conjointes ensemble” (my emphasis).
³ An example of this is presented infra, §2.4.
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measuring by instrumental means (teaching the mode of composition and use
of a surveying instrument of Peletier’s design)¹ and the resolution of various
geometrical problems (such as the construction of an asymptotic curve or the
instrumental construction of two mean proportionals, necessary to the resolu-
tion of the duplication of the cube).² The fact of only taking up problems from
Euclid’s Elements, as opposed to theorems, shows that Peletier acknowledged
the intrinsically practical character of problemata, even if these were dealt with
demonstratively in the Elements, unlike in hisDe usu orDe l’usage. Hence, when
introducing his treatment of Euclidean problems in the latter work, Peletier
wrote that the doctrine provided then is “half-mechanical and half-speculative”,
whose mechanical aspect is represented by the “use of the compass, the ruler,
and the other instruments which conform themselves to the practice of geom-
etry”.³ As I will briefly show later, one finds a similar treatment of Euclidean
problems in Perez de Moya’s Geometria practica y speculativa, in Digges’s Pan-
tometria and in Robert Recorde’s Pathway to Knowledge.⁴

A discourse of the sort would certainly justify the fact of introducing a more
practical treatment of Euclid’s propositions in the context of a commentary on
the Elements, but it was not properly materialised in Peletier’s commentary on
Euclid, nor even in that of Fine⁵ (among the authors of practical geometry trea-

¹ Peletier 1572, Probl. 27, 31: “De ratione metiendi intervalla & altitudines, unica statione & in uno
pede”; Peletier 1573, 47: “Mesurer les distances & hauteurs, par une seule station”.
² Peletier 1572, Probl. 28, 38: “Datae lineae rectae lineam ascribere, quae ad ipsam continuè acce-
dat, nunquam tamen cum ipsa concurrat, etiam infinitè protracta”; Peletier 1573, 58: “A une ligne
droitte donnee accommoder une autre ligne, laquele approche tousjours d’icelle droitte, sans jamais
se pouvoir conjoindre à elle, fussent elles infiniment alongees”. Peletier 1572, Probl. 29, 40: “Inter
duas rectas lineas datas, duas lineas continuè proportionaleis mechanicè reperire”; Peletier 1573, 61:
“Entre deux lignes donnees trouver mechaniquement deux lignes continuellement proportionales”.
³ Peletier 1573, 15: “nous donnons icy une doctrine moitié mechanique & moitié speculative: nous
servans icy de l’usage du Compas, de la Regle, & des autres Instrumens qui s’accommodent à la
prattique de Geometrie” (my emphasis). In the Latin version, this teaching is only described as me-
chanical. Peletier 1572, 7: “Quo fit, ut hic etiam mechanica doceamus: usum scilicet Circini, Regulae,
aliorumque instrumentorum quae ad opus Geometricum accommodari solent”.
⁴ In this work, which offers an English adaptation of Euclid’s first four books of the Elements,
the definitions, mostly taken from Book I, and the problems are dealt with together in the first
book, and the postulates, common notions and theorems are dealt with in the second book. For the
comparison mentioned in the text, see infra, Table 2.
⁵ Indeed, apart from certain rare occurrences or certain aspects that were not practical per se
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tises who asserted the interdependence of practical geometry and of Euclidean
geometry¹), even if these two authors did point, in their exposition of the Ele-
ments, to the fact that Euclid’s geometry itself contained a practical part in the
form of problems, in the sense that the problems would teach how to do some-
thing (e.g. construct or divide a figure or find a requested geometrical object),
as opposed to theorems, whose aim is to demonstrate, and thus know, universal
facts concerning geometrical objects.²

Among the authors that did present a more clearly practical approach to Eu-
clid’s Elements, the inherently practical character of problems was asserted by
Tartaglia, in relation to his distinction between practical and theoretical geom-
etry.³ And, in this context, problems are described as practical in a much more
concrete manner, that is, as teaching processes useful to artisans.

(though they become so when combined to other aspects), Fine and Peletier seemed overall in-
tent, in their commentaries on Euclid, to maintain the abstract and rational character of Euclid’s
principles and propositions. This notably appears, in Peletier’s commentary, by his rejection of
superposition on account of its allegedly empirical character.
¹ It is furthermore important to note that Fine was himself, and from the beginning of his adult life,
interested and engaged in practical applications of geometry as an intrument-maker, cartographer
and engraver. On Fine’s activities as an intrument-maker, cartographer and engraver, see notably
Brioist 2009c, Eagleton 2009, Turner 2009 and Pantin 2013.
² Fine 1536, 10: “Ex his itaque sane quam intellectis principijs, colliguntur problemata: hoc est, am-
biguæ propositiones, sciscitationésve, practicas figurarum affectiones discutientes: & Theoremata, id
est, speculativæ propositiones, præceptionis utcunque participes, quæ singulis accidunt figuris sola
inspectione diiudicantes”. and Peletier 1557, 12: “Problemata, ortus Figurarum comprehendunt, sec-
tiones, additamenta: eaque omnia in arte, quae facienda proponuntur. Atque, ut in Philosophia,
Problemata dicuntur dubia quaedam quae nobis examinanda & solvenda proponimus: sic in Geo-
metricis, Problemata vocamus constructiones ex arte depromptas: à quibus speculationes oriuntur,
seu Theoremata: nempè quae factas Figuras comitantur, proprietates & affectiones: quaeque scien-
tiae ipsi inhaerent & ipsam efficiunt. Nam in assertiones consistunt praeceptorum sicut Problemata
in constitutione Figurarum. Ad summam, Problemata materiam quandam praxinque artis referunt:
Theoremata, formam, scientiaeque meditationem” (my emphasis).
³ Tartaglia 1543, 3v: “Anchora inanzi che piu oltra procediamo bisogna notar qualmente la scientia
di Geometria, & di Arithmetica se divide in due specie, una del lequal (come fu detto in principio)
é detta Theorica, cioe, speculativa, over contemplativa: l’altra è detta prattica, cioe, attiva, over
operativa. (…) Euclide adonque per darci il fondamento d’una e dell’ altra specie, ci ha descritto
nell’Opra sua di due specie propositioni, l’una del lequal ce introduce nella theorica, cioe, nella parte
speculativa: & l’altra, ci conduce alla prattica, cioe, nella parte operativa. Le propositioni adonque
che ci conducono nella speculativa Grecamente si dicono Theoreme: & quelle che ci guidano alla
operativa si dicono Probleme” (my emphasis).
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And from these problems one learns the manner and way to draw, describe, inscribe,
circumscribe, divide and form not only all properties of the plane figure with all of the
accidental conditions that may occur in Painting, Perspective, Iconography, Chorogra-
phy, Scenography, Geography, and Cosmography, but also all the various properties of
the solid body with all of the subtle and accidental conditions that may occur, not only
in Orthography, Sculpture, and Architecture, but in any other ingenious operation that
depends from them, as one will be able to clearly see along the way.¹

The fact that, in this passage, problems are said to teach all sorts of geometri-
cal procedures relevant to artisans would be enough to justify the fact of dealing
with Euclid’s Elements, notably Euclid’s problems, according to a practical ap-
proach, all the more as Tartaglia’s Euclid corresponds to the first vernacular
translation of the Elements and was as such intended to make Euclid’s treatise
more accessible to a more common audience.²

Yet, despite the fact that he translated Euclid in Italian and in spite of the prac-
tical features he introduced in his exposition of the Elements (some of whichwill
be analysed in the next pages), Tartaglia did not so much teach the artisanal ap-
plications of Euclid’s problems and he made sure, more generally, to clearly
distinguish the more intellectual and scientific approach to geometrical propo-
sitions from their empirical and non-scientific treatment,³ evenmore than other

¹ Tartaglia 1543, 3v: “Et da dette Probleme si apprende il modo & la via di dissegnar, discri-
vere, inscrivere, circonscriver, divider, e formar non solamente ogni qualita di figura superficiale
con tutte quelle accidental conditioni che occorrer possano in Pittura, Prospettiva, Ichnographia,
Corographia, Scenographia, Geographia, & Cosmographia, ma anchora ogni varia qualita di corpo
solido con tutte quelle sottil & accidental conditioni che occorrer posiano, non solamente nella Or-
thographia, Scultura, & Architettura, ma in ogni altra ingeniosa operatione da queste dependente,
come procedendo manifestamente si potra vedere”.
² Tartaglia 1543, 3r: “Onde fra me pensando alla grandissima utilita che di queste due discipline
ne consegue percoloro che le sanno secondo li debiti bisogni allo intelletto accommodare, accio che
quelle tornino nel pristino stato, & che l’Opra dello ingeniosissimo Euclide sia riconosciuta, non
solamente ho vogliuto durar questa fatica di riassettarla & integrarla secondo le due tradottioni, ma
etiam per commune utilita dal latino in volgar tradurla, & dilucidarla con espositioni talmente chare
(sopra tutte le diffinitioni, & altri oscuri passi) che ogni mediocre ingegno, senza notitia di alcuna altra
scientia sera capace de intenderla” (my emphasis).
³ Tartaglia 1543, Prop. I.2, 16r-v: “Il Tradottore. Molti principianti, che anchora non sanno che cosa
sia il procedere scientifico demostrativo, quasi si scandalizzano di questa soprascritta propositione
(per la sua bassezza) parendogli (come è il vero) puotersi essequire tal problema per la piu corta via,
cioe, pigliando diligentemente con un compasso la misura della data linea bc & con tale appritura
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commentators of Euclid who wrote in Latin, such as Clavius. Tartaglia did not
either make significantchanges to Euclid’s text such as translated by Campanus,
which remained overall abstract (with the main exception of the mention of the
compass in the two first propositions). Tartaglia certainly did, in the geometri-
cal part of the General trattato (Book V), offer a practical treatment of Euclidean
problems, within a general teaching on the different kinds of practical geometry
that exist, from the most utilitarian to the most speculative, offering thereby
an example of this geometry that brings together theory and practice, as de-
scribed later by Peletier. Yet, as with Peletier’s De usu, even if this work allows
to complete Tartaglia’s teaching of geometry by setting forth a properly practi-
cal version of Euclid’s geometrical doctrine, it was published after the edition
of Euclid’s Elements.¹ Moreover, if Euclid’s problems have indeed a more practi-
cal scope than theorems, they certainly did not convey, at least in the versions
of the Elements of Fine, Peletier or Tartaglia, the kind of practical geometry
represented by Peletier’s De usu or by Fine’s Geometria practica or Tartaglia’s
General trattato, notably as they are always demonstrated, contrary to the way
Euclid’s problems were dealt with in Tartaglia or Peletier’s treatises of practi-
cal geometry. As such, Euclid’s problems were practical in a way that remained
overall conform to the theoretical character that was conferred to his geometry
and to his book of the Elements in the medieval and Renaissance mathematical
culture.

At any rate, this does not mean that there was no underlying will on the part
of such authors, or of any other sixteenth-century translator or commentator of
Euclid, to bring together in some way the theoretical and the practical parts of
geometry (that is, not merely the practice involved in Euclid’s abstract construc-
tions), or to better show their underlying connections. Yet, the fact of dealing
with a canonical text such as Euclid’s Elements, which was moreover acknowl-
edged as the model par excellence of a demonstrative, abstract and speculative

di compasso assignarne un’altra di tal quantita che termini nel detto ponto a laqual cosa (per esser
evidente al senso) pare a lui che non si debba, ne si possa negare. A questo se risponde, che eglie
il vero che tal conclusione, per esser evidente al senso in materia, mal si puo negare: nientedimeno
tal operare non seria demostrativo, & l’Autthore è tenuto à demostrar ogni sua propositione, si
operativa come speculativa”.
¹ While Tartaglia’s translation of Euclid’s Elements was first published in 1543, his General trattato
was published between 1556 and 1560.
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type of geometry, would have made it more difficult to realise this intention.
Such an approach to geometry would certainly have been easier to implement
within a practical geometry treatise, which allowed greater flexibility in terms
of content, style and approach, as shown by Peletier’s De usu or by Perez de
Moya’s Tratado de geometria pratica y speculativa.

In the development of Peletier’s geometrical thought, the De usu, which was
published fifteen years after his commentary on Euclid, could actually have
been regarded as a means to realise such a conception of geometry that would
bring together its theoretical and practical part. As such, even if Peletier left
aside the demonstrative part and the axiomatic structure of Euclid’s geometry
in his treatment of Euclid’s problems within theDe usu,¹ his intention may have
been to combine theoretical and practical geometry and to offer thereby a form
of geometry that had a more general scope than a more classical practical ge-
ometry treatise, for which he would have chosen to entitle his On the use of
geometry instead of “on practical geometry” (as Fine’s De geometria practica
or Bovelles’s Geometrie practique) or “on the practice of geometry” (as Hugh
of Saint-Victor’s practica geometriae or Merliers’s Practique de geometrie). He
would, in other words, havechosen a title that could evoke the notion of practice
in a more inclusive sense, encompassing the utilitarian applications of geome-
try as much as the processes through which geometers perform constructions
and resolutions of problems in the framework of their scientific pursuit. This
could be what he meant when he wrote that his intention in the treatise was
to “show the practice of geometry, that is, the mechanical operations (ouvrages
mechaniques) within theoretical geometry (la Theorique)”.²

¹ The fact that Peletier did not follow the same order of propositions as in Euclid’s Elements and left
aside several of the propositions of Book I which would have been entitled to a practical treatment
(such as Prop. 1, 2 and 3) is clearly justified by the fact that in the application or use of a given
discipline, it is not necessary to follow the method adopted in the theory. Peletier 1572, 7: “Nunc ad
Problemata veniamus: quae quidem omnia ex Euclidis Elementis desumpta sunt, non ordinatim, sed
passim. Nam in usu tradendo, non eadem methodus est necessaria quae in Theoria scribenda”; Peletier
1573, 14-15: “Maintenant nous viendrons aux Problemes. Lesquels sont tirez des Elemens d’Euclide:
non pas par ordre, mais par cy par là. Car en monstrant l’usage de quelque Art, il n’est pas necessaire
de suyvre tele methode comme si on enseignoit la Theorique” (my emphasis).
² Peletier 1573, Problem 17, 32: “en ce Traité nous monstrons la pratique de Geometrie, c’est à dire
les ouvrages mechaniques parmi la Theorique, comme nous avons promis dés le commencement”.
In the Latin version, this teaching is again only described as mechanical. Peletier 1572, 20: “Verum
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Thus, for those authors who did actively introduce amore practical treatment
of the Elements, the fact of challenging the distinction between theoretical and
practical geometry in a more explicit manner in their exposition of Euclid rep-
resented a strong and significant gesture, offering a different representation
of Euclidean geometry than the one more straightforwardly and more tradi-
tionally regarded as representative of theoretical geometry. This itself begs the
question why they chose to follow this path, especially as they rarely offered
a clear justification for their practical approach, nor did they often present an
explicit discourse on the relation between theoretical and practical geometry in
this context.¹

Considering the assertion of the introductory role of Euclidean geometry
with respect to practical geometry in many sixteenth-century practical geome-
try treatises, one possible motivation for the practical treatment of the Elements
may have been to effectively demonstrate, from within their commentary, that
Euclid’s propositions (at least a certain number of them) correspond indeed to
the foundation of many rules and constructions taught in practical mathemat-
ics and to show in which way. In this sense, the practical treatment of Euclid’s
Elements would in a certain manner aim to anticipate on or prepare for the
teaching of practical geometry, to which theoretical geometry had often been
said to introduce, helping students to better understand the principles behind
the composition and use of certain instruments to measure, construct or divide
magnitudes, and providing practical geometry thereby with a scientific ground-
ing. This was in a way what Tartaglia asserted when he wrote, at the beginning
of his commentary on Euclid, that Euclidean problems teach procedures useful
to artisans, from painters and cartographers to sculptors and architects.² We
can also find a similar assertion in the title of Xylander’s German translation of
Euclid’s Elements, which points to the concrete uses of Euclid’s geometry for ar-
tisans, such as painters, goldsmiths and carpenters, but also for those who need
to know how to count and solve common arithmetical and algebraic problems
by the means of the Rechenkunst.³

quia hic etiam mechanica docemus, sicut ima antè praefati sumus”.
¹ Tartaglia represents in this regard an exception.
² Tartaglia 1543, 3v. See supra.
³ Xylander 1562, title page: Die Sechs Erste Bücher Euclidis vom anfang oder grund der Geometri.
In welchen der rechte grund, nitt allain der Geometri (versteh alles kunstlichen, gwisen, und vortaili-
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Another, most probable, incentive behind the practical treatment of Euclid’s
Elements, would have been to help students gain a quicker and easier under-
standing of some of Euclid’s concepts and propositions, notably among a pub-
lic that would be less familiar with scholarly works of mathematics and theo-
retical mathematical concepts, notably among readers more familiar with the
mechanical arts and with certain technical applications of mathematics. Indeed,
the fact of teaching Euclid’s propositions by instrumental means or in a more
empirical manner, using concrete examples, procedures and computations, or
even the fact of showing the concrete applications of some of Euclid’s proposi-
tions, would enable the reader to gain a more immediate and intuitive grasp on
some of the abstract constructions or universal facts concerning magnitudes, as
well as a more direct identification of the reason for their truthfulness, which
are otherwise mostly conveyed in a rational or logical manner, being demon-
stratively derived from a set of preestablished principles or previously demon-
strated propositions.These practical featureswould also enable to show the uses
and profit that could be drawn from the study of Euclid’s geometry, helping the
readers to apprehend the wider scope of geometrical knowledge while encour-
aging them to pursue their study of the Elements in spite of its abstractness
and complexity, as was regularly claimed in the prefaces to sixteenth-century

gen gebrauchs des Zirckels, Linials oder Richtscheittes und andrer werckzeuge, so zu allerlai abmessen
dienstlich) sonder auch der furnemsten stuck und vortail der Rechnenkhunst, furgeschriben und dar-
gethon ist. (…) Alles zu lieb und gebrauch den Kunstliebenden Teutschen, so sych der Geometri und
Rechnenkunst anmassen, mit vielfaͤltiger muhe und arbeit zum trewlichsten erarnet, und in Truckh
gegeben (…). It is also asserted in other passages of the prefaces, as well as in various parts of the
commentary. See notably ibid., b1v: “Dann wer so gar grob und unerfahren ist, daas er nit merckht
wie alle kunsten (eum furnemsten aber die edlesten, so irer sinnreichen art unnd subtiler wirckhung
halben den andern furgezogen werden, als da ist der Maler, Goldtschmid, Bawmaister, &c). sich mit
zirckel, lineal, bleywag, ziffern und zalen begehn und behelfen muessen: dem wurde ich villeicht
umb sunst und mitt vergebner muhe diese kunsten loben. Will solche bei dem pflegel unnd holtzart
bleiben lassen. Welche aber verstehn, und (wie alle kunstler, so auch nit under die gelerten, sonder
under die layen gezelt werden) erfaren, wie nottwendig und nutz inen sei zu irem furhaben der recht
gebrauch des Zirckels unnd Richtscheitts”.
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commentaries on Euclid’s Elements, as those of Fine,¹ Tartaglia,² Forcadel,³ Com-
mandino,⁴ Clavius.⁵This would be all themore relevant in the case of vernacular

¹ Fine 1536, 2r-v: “Et proinde fit, ut nulla disciplina certior existat Geometria (…). Adde quòd usui,
& commodo generis humani plurimum cedit”. See also Axworthy 2016, 182-184.
² Tartaglia 1543, 3r-3(b)r: “queste due scientie, overo discipline non hanno di bisogno di alcuna al-
tra scientia, inquanto alla lei essentia, ma ben tutte le altre hanno bisogno di loro, come nel processo
à quella lo faro cognoscer, & vedere: & non solamente le liberali, ma etiam tutte le mecanice. (…) E
tanta è la utilita, oltra la soavita, dolcezza di studio che si trova nelle contemplatione mathematice,
piene di certezza, che Archimede siracusano per il studio di quelle con suoi mecanici ingegni diffese
un tempo la Citta di Siracusa contra l’impeto di Marco marcello Consule Romano, per ilche acquistò
il nome della immortalita. Per virtu di queste Dedalo peritissimo fabricò il nominato Laberinto al
Minotauro. Per mezzo di queste si fanno varii, & diversi modelli: fabricansi ponti con archi, quasi
alla natura impossibile. Anchora chi con l’intelletto ben considera tutte le sorte di antique & mod-
erne machine, & istromenti bellici, si offensivi come diffensivi, come sono bastioni, ripari, bricoli
(…). Delle nove inventioni per me trovate sopra il tirar delle moderne machine tormentarie (dette
dal volgo artegliarie) (…). Di quanto aiuto et presidio siano le dette due scientie, over discipline,
alla Architettura,Vitruvio Pollione nel suo Prohemio lo fa manifesto. Anchora che ben considera
& guarda la scientia Perspettiva, senza dubbio so trovera che nulla sarebbe, se la Geometria come
matre sua non se gli accommodasse”.
³ Forcadel 1564, *2r-v (speaking about mathematics in general): “Car encores qu’elles s’addressent
principalement aux choses celestes, si est ce qu’elles embrassent encores les terrestres, de sorte que
sans leur aide il est fort mal aisé de se tirer d’une infinité de difficultez qui embrouillent ordinaire-
ment l’esperit des hommes. Aussi par elles l’on congnoist de beau commencement tous les Roy-
aumes, toutes les Mers, toutes les Rivieres, Montaignes, Vallées & autres choses notables, qui sont
respandues sur les orizons de la terre, & ceux qui manient voz affaires sont par elles grandement
secourus pour sçavoir tout incontinent de quelle importance vous peuvent estre les confederations
des Princes, Roys, Republiques, & autres potentatz de l’Europe & de l’Asie, selon qu’ils vous ont
voisins ou loingtains: lesquelles choses & autres semblables, ne se peuvent bonnement congnoistre
sans la Geographie, ny la Geographie sans l’Astronomie”.
⁴ Commandino 1572, Prolegomena [*4v]: “Ceterum de his hactenus summatim dixisse satis sit. Sed
quoniam plerique his præsertim temporibus sola utilitate ad optimarum artium studia excitantur,
liberalesque colunt disciplinas, videamus obsecro, an mathematicæ nullius sint commodi ad iuvan-
dos humanæ vitæ usus (…). Experiantur deinde siquid dimetiri queunt absque Geodesiæ adiumento.
(…) Quantum denique commodi, atque utilitatis affert Geometria, Arithmetica, & relique omnes in
publicos, & privatos usus? (…) ubi vero copias ostendere cupit, ad figuram quadranguli format, nisi
unius Geometriæ auxilio?”
⁵ Clavius 1611-1612, 7: “Dicuntur enim Geometrica elementa, eam ob causam, quod sine ipsis
nullum opus Mathematicum possimus aggredi, ne dicam fructum aliquem inde percipere. Omnes
siquidem Mathematicarum rerum scriptores, ut Archimedes, Apollonius, Theodosius, &c. in quis
demonstrationibus usurpant haec Euclidis elementa, tanquam principia omnibus iam diu perspecta,
atque demonstrata. (…) Ex his etenim elementis, veluti fonte uberrimo, omnis latitudinum, longi-
tudinum, altitudinum, profunditatum, omnis agrorum, montium, insularum dimensio, atque divisio,
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translations of Euclid’s Elements, who could be read by people less accustomed
to, and interested in, more speculative topics and demonstrations.¹

Another possible motivation for the practical treatment of Euclid’s Elements,
which is less evident and certainly less consciously admitted in the sixteenth
century than it would be in a later context, is the fact that practical geometry,
insofar as it deals with the instrumental construction of curves and of resolution
of problems, may be taken to represent itself the foundation of theoretical ge-
ometry with regard to the generation and construction of abstract geometrical
figures. Such a conception would in a sense relate to how Newton regarded me-
chanics as the foundation of geometry in his Principia mathematica,² inasmuch

omnis in caelo per instrumenta siderum observatio, omnis horologiorum sciotericorum composi-
tio, omnis machinarum vis, & ponderum ratio, omnis apparentiarum variarum, qualis cernitur in
speculis, in picturis, in aquis, & in aere variè illuminato, diversitas manat.Ex his, inquam, elementis
machinae totius huius mundanae est inventummedium, atque centrum; inventi cardines, circa quos
perpetuo convertitur, orbis denique totius explorata figura, ac quantitas. Ostenditur atque demon-
stratur unius huius scientiae vi caeli universi, siderumque perennis conversio, ortus, occasus, abitus,
reditus, ascensus, descensus, diei ac noctis, temporumque toto anno per omnem terrarum situm, &
mundi inclinationem, varietas. Coniunctiones item planetarum, oppositiones, aspectusque varii tam
expedite cognoscuntur, ut & loca illorum in caelo, & eclipses, seu Solis, ac Lunae defectiones cer-
tissime, antequam fiant, in omnes posterum tempus à Mathematicis praedici queant. Hoc denique
ingens Dei, & Naturae opus, mundum, inquam, totum, mentis nostrae oculis, munere ac beneficio
Geometriae subiectum conspicimus”.
¹ Yet, just as there were Latin commentaries on the Elements, as I will show, that did introduce
some practical elements within their exposition of Euclid’s text, there were vernacular translations
of Euclid’s Elements, such as those of Rodrigo Zamorano in Spanish (1576), that of Federico Com-
mandino in Italian (1575) and that of Jean Errard in French (1598) which either did not offer any
additional elements of a practical nature, or in which such features were highly limited. Moreover,
practical geometry treatises, which offered a more technically-minded and hands-on teaching of
geometry, were published in both Latin and in the vernacular.
² Newton 1687, i; Newton (transl. in Cohen and Whitman 1999, 381-382), Preface to the reader :
“For the description of straight lines and circles, which is the foundation of geometry, appertains to
mechanics. Geometry does not teach how to describe these straight lines and circles, but postulates
such a description. For geometry postulates that a beginner has learned to describe lines and circles
exactly before he approaches the threshold of geometry, and then it teaches how problems are solved
by these operations. To describe straight lines and and to describe circles are problems, but not
problems in geometry. Geometry postulates the solution of these problems from mechanics and
teaches the use of the problems thus solved. And geometry can boast that with so few principles
obtained from other fields, it can do so much.Therefore geometry is founded on mechanical practice
and is nothing other than that part of universal mechanics which reduces the art of measuring to
exact propositions and demonstrations. But since the manual arts are applied especially to making
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as it teaches the modes according to which geometrical figures come about from
the motion of a point, a line or a surface; or, closer to the sixteenth century, it
would relate to the foundational role given by Descartes to curve-tracing instru-
ments in his new geometry.¹ This could, for instance, be implicitly set forth in
the commentary on the Elements of Christoph Clavius, who explicitly related
Euclid’s definition of the straight line, and indirectly the first two postulates
which govern the construction of all straight lines in Euclid’s geometrical work,
to the use of the straightedge.² In this regard, just as theoretical geometry would
have been regarded as the foundation for practical geometry by demonstrating
the truth of the taught procedures, practical geometry would have constituted
the foundation of theoretical geometry by providing the instrumental mode
of generation of geometrical objects, these having been only afterwards dealt
with in an abstract manner and without any reference to instruments. If not
an incentive, the admission of the foundational function of practical geome-
try with regard to the constitution of geometrical objects could have been a
consequence of this more explicitly instrumental interpretation of Euclidean
geometrical concepts. Along with the fact of allowing a numerical treatment of
magnitudes, the fact of offering a more practical treatment of theoretical geo-
metrical propositions may have therefore partially contributed to the changes
in the conception of geometrical knowledge that would lead to Descartes’s new
approach to geometry.

In a quite different, but not unrelated way, the fact that geometry in general
was held to have come from the practice of land-measurers, even if it was said
to have progressed beyond it, could (as said) have somewhat enabled to justify
the fact of dealing with Euclid’s text in a more practical manner, by implicitly
setting forth the origin, as well as the use, of certain geometrical principles
or propositions in concrete problems or practices. This would differ from the
fact of appealing to concrete examples in purely pedagogical aim, that is, when

bodies move, geometry is commonly used in reference to magnitude, andmechanics in reference to
motion”. (Emphasis proper to the translation). See Arthur 2021, 297, and Guicciardini 2009, 293-299.
¹ On the connection between the generation of curves and instrumental processes in Descartes’s
geometry, see notably Molland 1976 and Bos 1981.
² Axworthy 2022, 199-202 and 213-217.The same could be said of the use of the compass in relation
to the definition of the circle and to Euclid’s third postulate, but this was not made as explicit in
Clavius’ commentary on the Elements.
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aiming to facilitate the learning of practical geometry, since it would rather
function as a historical explanation for the nature and structure of certain geo-
metrical problem. Yet, since Euclidean geometry is considered to have left aside
any immediate utilitarian concerns to focus on the properties and relations of
figures in a universal and demonstrative manner, it does not seem that it could
have been attributed a significant role (as opposed to the origin of the consti-
tution of geometrical figures in instrumental processes) in the foundation of
geometry as an abstract science of magnitudes and thus in the comprehension
of the concepts, order and constitution of Euclidean geometry, standing rather
as an exterior justification for its historical existence and its ulterior uses.

An equally possible motivation, which does not necessarily conclude the
list of possible incentives for the practical treatment of Euclidean propositions,
could have been the desire, whichwas expressed by Peletier in the preface of De
l’usage de geometrie, to conjoin the practical and theoretical parts of geometry
so as to obtain a unified and comprehensive knowledge of magnitudes in all its
aspects, in which knowledge and experience, or contemplation and application,
are appealed to in order to bring each type of geometrical knowledge, theoreti-
cal and practical, to perfection. As said, this is not so much the image that may
be derived from Peletier’s treatment of Euclid’s Elements, but it may (as said)
have been part of a later project on his part. In a certain manner, one may find a
certain will to unify theoretical and practical geometry in other works of practi-
cal geometry which offered a preliminary teaching on the theoretical principles
of geometry, such as Fine’s 1532 Geometria libri duo, Bovelles’s Gometrie prac-
tique, Tartaglia’s General trattato, Perez de Moya’s Geometria practica y specu-
lativa, and even Errard’s Geometrie et practique generalle d’icelle, even if then
the content of the theoretical part mainly consists in a long list of definitions.

In a more conspicuous manner, such an intention may be regarded as materi-
alised by Petrus Ramus’ 1569 Geometria,¹ in which elements of theoretical and
practical geometry are brought together to the point of making both parts dif-
ficult to distinguish and in which the place given to demonstrations is sensibly
restricted, allowing for a more empirical, instrumental and numerical modes of
apprehension of geometrical notions. Yet, Ramus’ aim was very different from
those of the authors presented above in the sense that, to him, geometry as

¹ Ramus 1569. On this work and its history, see Goulding 2018.
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a whole should be conceived as an art of measuring, calling it an ars bene me-
tiendi,¹ which as suchwould have achiefly practical aim andwould be in priority
addressed to craftsmen.² Indeed, as shown in particular by his Scholae mathe-
maticae, Ramus actually aimed to overthrow the Euclidean model of mathemat-
ical teaching, which, he claimed, had been contaminated by the Platonic repre-
sentation of mathematics as detached from the material world. In this context,
the aim and scope of geometry is said to be best represented by its use in the art
and practice of those who apply its precepts, namely astronomers, geographers,
surveyors, navigators, engineers, architects, painters and sculptors, than by the
study of its principles.³

Looking at the commentators on Euclid that did propose a more obviously
practical treatment of Euclid’s Elements, and with which I will deal in the fol-
lowing pages, it is unlikely that they intended to offer thereby a renewed form
of geometry in which theoretical and practical geometry would be conjoined in
the sense that the way in which these two parts of geometry were connected
was still very unbalanced, the practical elements representing mostly a limited
part of these works, being often confined to a specific part of the commentary.
Yet, such a conception may have been derived a posteriori from this practical
treatment of Euclid’s Elements and its greater frequency towards the end of
the sixteenth century, since it presents to us a certain shift in the treatment
of the distinction between theoretical and practical geometry in the direction
of a certain reduction of its importance and significance in the representation

¹ Ramus 1569, Geometria libri XXVII, 2: “geometria hunc in modum definita sit ars bene metiendi.
Nomen autem re ominata levius est. Geometria enim dicitur tanquam terrae tantum dimetiendae
ars quaedam sit, quod nomen videtur in Aegypto primum factum esse: ubi ad terminos agrorum
Nili inundationibus obrutos restituendum primum geometria adhibita sit” (my emphasis).
² Loget 2019 and Goulding 2006.
³ Ramus 1569, Geometria libri XXVII, 1: “Geometria est ars bene metiendi. Finis geometriae est bene
metiri, ideoque suo fine definitur: Bene metiri igitur est cuiusque rei mensurabilis naturam atque af-
fectionem considerare, resquemensurabiles comparare inter se, rationemque& proportionem atque
similitudinem perspicere: id enim totum est benemetiri, sive congruentia & applicatione datae men-
surae, sive multiplicatione terminorum, sive facti per multiplicationem partitione, sive quacunque
alia ratione rei mensurabilis affectio consideretur. Atque hic finis geometriae usu atque opere geo-
metrico multò splendidior apparebit, quam praeceptis, cum animadvertes astronomos, geographos,
geodetas, nautas, mechanicos, architectos, pictores, statuarios in descriptione & dimensione astro-
rum, regionum, fundorum, machinarum, aequaorum, aedificiorum, tabularum, signorum nihil aliud
quàm geometria uti”.
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and teaching of geometry, and of mathematics in general, altogether in terms
of content, style and addressed audience. This, in a way, points to the evolution
of practical geometry observed by D. Raynaud, according to which the category
and designation of practical geometry will start to disappear from the end of
the nineteenth century, its content and approach to geometry being absorbed
by manuals of elementary geometry and by more specific types of professional
mathematical knowledge.¹

It nevertheless remains that, in the sixteenth century, the introduction of
practical features in commentaries on Euclid’s Elements were, as said, much
more present than in other works belonging to the ancient and medieval Eu-
clidean tradition and were intended as practical in a muchmore evident and ex-
plicit manner. And given the correspondence commonly admitted at the time
between Euclid’s Elements and theoretical geometry, and more generally be-
tween Euclid’s Elements and geometry in general, this would constitute a crucial
step in the transformation of the concept of geometrical knowledge towards an
erosion of the distinction between practical and theoretical geometry, at least
within the more classical framework according to which Euclidean geometry
was held as representative of theoretical geometry.

Hence, beyond the question of the motivations behind the practical adaption
of Euclidean propositions, it is important to look in more detail at the different
ways and the extent to which they actually reworked Euclid’s text or explained
it in a more practical manner, and which representation it provides of the con-
nection between theoretical and practical geometry in this context. More gener-
ally, it is important to see in which way they might have contributed to change
the relation and status of practical and theoretical geometry, and the represen-
tation of geometry in general thereby.

In the next part of this article, I will therefore show through more specific
examples some of the different ways in which certain characteristics proper to
medieval and Renaissance Western practical geometry treatises could be found
within translations and commentaries on the Elements in the sixteenth century.
I will attempt to manifest more concretely how it may have contributed to op-
erate a form of hybridization internal to the domain of geometry, impacting
not only the form and content of Euclid’s treatise, but also the place attributed

¹ Raynaud 2015, 119-124.
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to Euclidean geometry within the spectrum going from applied geometry to
speculative or theoretical geometry, and thereby the very representation of the
scope, nature and methods of geometry at the end of the sixteenth century.

2. The practical treatment of Euclid’s Elements in the
sixteenth century

My intention in the following pages is to present the main ways in which
Euclidean principles and propositions were treated according to a practical
approach in sixteenth-century translations and commentaries of the Elements,
namely: 1) through a practical adaptation of Euclid’s text itself, such as trans-
mitted by the version of Campanus of Novara published in 1482 and by the
1505 Latin translation from the Greek of Bartolomeo Zamberti, 2) through the
addition of commentary sections specifically dedicated to the practical inter-
pretation of a given proposition, 3) through an empirical handling of Euclidean
demonstrative methods, 4) through a numerical treatment of Euclidean propo-
sitions and 5) through explicit references to artisanal applications.

I will not be able to provide here a complete picture of these different practical
approaches or features by quoting the various ways in which each of them ap-
peared throughout the sixteenth-century Euclidean tradition,¹ but simply pro-
vide one or two examples taken from the most conspicuous cases. I will provide
along the way examples drawn from contemporary practical geometry treatises
as a means to better manifest the relation between the considered examples and
this practical geometry tradition.

¹ This will be the object of a forthcoming study.
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Table 1: Scheubel 1550, Prop. I.3, construction 1.

Euclida Scheubel
Enunciationb Given two unequal straight

lines, to cut off from the
greater a straight line equal to
the less.

Given two unequal straight
lines, to cut off from the longer
a straight line equal to the
shorter.
There are three operations, or
constructions, for this proposi-
tion.

Exposition Let AB, C be the two given un-
equal straight lines, and let AB
be the greater of them.

Specification Thus it is required to cut off
from AB the greater a straight
line equal to C the less.

ConstRuction At the point A let AD be
placed equal to the straight
line C; [i.
2] and with
centre A
and dis-
tance AD
let the cir-
cle DEF be
described.
[Post. 3]

First, let the quantity of the
smaller line be taken by the
means of a compass. Then, let
it be marked as a point in the
longer, starting from one of its
extremi-
ties, and
the task
will have
been done,

DemonstRation Now, since the point A is the
centre of the circle DEF, AE is
equal to AD. [Def. 15] But C
is also equal to AD. Therefore
each of the straight lines AE, C
is equal to AD; so that AE is
also equal to C. [C.N. 1]

which can be demonstrated
from the common notion:
things that are equal to one
thing are equal to each other.c
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Table 1: Scheubel 1550, Prop. I.3, construction 1.

Conclusion Therefore, given the two
straight lines AB, C, from AB
the greater AE has been cut
off equal to C the less.
(Being) what it was required to
do.d

a Euclid, Prop. I.3 (Heath 1956, I, 246-247). The diagram is taken from Zamberti, in
Lefèvre 1516, I.3, 6v. b The parts of the propositions are here distinguished and des-
ignated according to the nomenclature used by Proclus, in his commentary on the first
book of Euclid’s Elements (Proclus, Friedlein 1873, 203; transl. in Morrow 1992, 159):
enunciation | πρότασις, exposition | ἔκθεσις, specification / διορισμός, construction |
κατασκευή, proof | ἀπόδειξις and conclusion / συμπέρασμα. c Scheubel 1550, I.3, 84:
“ΠΡΟΤΑΣΙΣ Δύο δοθεισῶν εὐθειῶν ἀνίσων, ἀπὸ τῆς μείζονος, τῇ ἐλάσσονι ἴσην εὐθεῖαν
ἀφελεῖν. — Duabus datis rectis lineis inaequalibus, à longiori, breviori aequalem rectam
lineam abscindere. Est huius propositionis triplex operatio, seu fabrica. Prima, ut officio
circini quantitas brevioris accipiatur: ea deinde in longiore, ab extremitate una incipiendo,
puncto aliquo signetur: & factum erit negotium, id quod per communem illam noticiam,
Quae uni sunt æqualia, et inter se sunt æqualia, demonstrari poterit”. Cf. Zamberti 1505,
A3r: “Duabus datis rectis lineis inaequalibus: a maiori minori aequalem rectam lineam
abscindere. Sint datæ duæ rectæ lineae inaequales AB, C quarum maior sit AB. Oportet
ab ipsa AB maiori ipsi C minori æqualem rectam lineam abscindere. Ponatur per secun-
dam propositionem ad signum A lineæ vero et quam A signum centrum est circuli DEF
equalis est AE ipsi AD. At linea C ipsi AD est æqualís. utraque igitur & AE & C ipsi ad est
æqualis. Quare & linea AE ipsi C est aequalis. Duabus igitur datis rectis lineis inaequal-
ibus AB, C ab ipsa ABmaiori ipsi C minori aequalis abscisa est AE quod facere oportebat”.
d Euclid, Prop. I.3 (Heath 1956, I, 246-247).

2.1. Practical adaptation of Euclid’s proofs

In the 1550 Latin commentary by the Tübingen university professor Johannes
Scheubel, the classical proof of Euclid’s Prop. I.3¹ is for instance replaced by

¹ Euclid, Prop. I.3 (Heath 1956, I, 246): “Given two unequal straight lines, to cut off from the greater
a straight line equal to the less”.
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a) b)

Figure 1: a) Pomodoro, Geometria practica, 1599, Tavola I; b) Clavius, Euclidis
elementorum libri XV: Accessit XVI, 1611-1612, Df. I.12, p. 17.

three different modes of construction, or operationes or fabricae. Already, the
fact of providing different modes of construction is practical in the sense that it
does not follow one determinate argumentative model (as in the more classical
versions of the Elements) and offers the possibility to choose the construction
that is most appropriate to a given situation. It thus places the circumstances
in which the construction is to be performed above the demonstration of its
geometrical validity and its function in Euclid’s axiomatic system.

First construction

Among the three proposed constructions, the first (Table 1) is the most prac-
tical.

Instead of requesting, as in Euclid’s classical proof, that a line equal to the
shorter given line be placed at one extremity of the longer (through Euclid’s
Prop. I.2) and then to draw a circle according to its length that will cut off, from
the longer line, a segment equal to it (through the third postulate), Scheubel
invites the reader to measure the length of the shorter line with a compass and
to mark a point in the longer line according to this interval with the mobile leg
of the compass.

The fact of referring to instrumental procedures within the proofs of Euclid’s
propositions, even if present in certain medieval versions of the Elements (as
in Campanus), contrasts (as said) with the total absence of references to instru-
ments in the Greek text of Euclid and its Greek-based Latin translations. The
Greek text of Euclid’s Elements, which was made available in print by Simon

4 : 50 Angela Axworthy



Grynaeus in 1533, was very likely known to Scheubel since he systematically
added the Greek text of the enunciations to the Latin propositions. On the other
hand, as said, the use of instruments is a feature that is indissociable from prac-
tical geometry, even if the instruments of practical geometry went far beyond
the compass and straightedge useful to Euclidean constructions, as they mainly
included measuring and surveying instruments.

Now, the number of references to instruments in commentaries on Euclid’s
Elements increased in the second half of the sixteenth century (see Figs. 1, 2),
and were appealed to in a more systematic manner, as in the commentaries of
Henry Billingsley and Christoph Clavius.¹ In the concerned texts, references
to instrumental procedures were sometimes supplemented with illustrations of
geometrical instruments, instructions to build some of the mentioned instru-
ments, specifications regarding their material features, the conditions of their
use in a concrete context and references to artisanal versions of the geometer’s
instruments (Fig. 1).²

¹ See infra. In Xylander 1562, see for instance the title page: Die Sechs Erst Bucher Euclidis, vom
anfang oder grund der Geometri. In welchen der rechte grund, nitt allain der Geometri (versteh alles
kunstlichen, gwisen, und vortailigen gebrauchs des zirckels, Linials oder Richtscheittes und andrer
werckzeuge, so zu allerlaj abmessen dienstlich) sonder auch der furnemsten stuck und vortail der
Rechenkhunst, furgeschriben und dargethon ist (my emphasis).
² In Tartaglia 1543, Post. 1, 12r: “Et che’l sia il vero, el si sa che communemente per tirar, over
designare le dette linee di puoca longhezza, el si costuma prima di farsi fare una listetta di legno, overo
di alcuno metallo piu plana & retta che sia possibile, & secondo l’ordine di quella tirale dette linee
rette da un ponto ad un’altro, secondo le sue occorrentie, laquale listetta alcuni la chimano Rega, &
alcuni altri Regola, laqual rega, over regola, essendo perfettamente giusta pur piu giustamente tirara
le dette linee rette, domente che la superficie della materia dove se tirano sia perfettamente piana, &
che lui sia anchora diligentissimo nell’ operare: lequal cose non è molto facile accordarle, cioe, che
la regola sia perfettamente piana, & retta, & che la superficie della materia dove che si tirano sia
similiter perfettamente piana, & che l’operante usi tutta quella perfetta diligentia che si possa usare.
Similmente per tirare, over designar le linee di molta longhezza costuma di tuorre una corda sottile
longa à sofficientia, & imbratta quella con una spongia infusa in certa acqua tinta communemente
d’un colore rosso, & lui insieme con un compagno tirano la detta corda, & ciascaduno di loro con
unamano la firmano l’uno all’ altro, dapoi l’uno di loro con l’altra mano tira, & marca sforzatamente
la detta corda rettamente in aere, dapoi la lascia scorrerere, & quella percuottendo nella superficie di
quella materia, dove si ritrova, vi lascia la linea signata di quel suo liquore”; Dee, in Billingsley 1570,
XII.17, 380r: “(…) shall you in this delineation in apt pastborde, or like matter framed, finde al things
in this probleme very evident. I neede not warne you, that the line AY may easely be imagined,
or with a fine thred supplyed (…)”; Clavius, Euclidis elementa…, 1611-1612, Df. I.12, 17: “Facilius
idem cognoscemus beneficio normae alicuius accurate fabricatae, qualem refert instrumentum ABC,
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a) b)

Figure 2: a) Billingsley, The Elements of geometry, 1570, XII.17, 380r; b) Tartaglia, Euclide
megarense philosopho, Df. I.2, 1543, 7r.

Also notable in Scheubel’s treatment of Prop. I.3 is the replacement of Eu-
clid’s demonstration by the sole mention of Common Notion 1,¹ through which
Scheubel merely hinted at the way the demonstration should be conducted
(“this can be demonstrated from the common notion: things that are equal to
one thing are equal to each other”). This approach is comparable to the use of
“directions for proof” (i.e. mere indications of the principles or propositions that
allow to prove the propositions) in the medieval compilations of the Elements
such as that by Robert of Chester (otherwise called Adelard II).²

The reduction of the demonstration here, which will end in a total suppres-
sion in the third construction, also recalls the treatment of Euclidean proposi-
tion in practical geometry treatises, inwhich the proofsweremost often stripped
of the demonstrative part, as shown here through the treatment of Euclid’s
Proposition I.11³ in Robert Recorde’s Pathway to Knowledge⁴ (Recorde 1551,The

constans duabus regulis AE, AF, ad angulum rectum in A, coniunctis”.
¹ Euclid, CN 1 (Heath 1956, 155): “Things which are equal to the same thing are also equal to one
another”.
² Murdoch (1968) and Busard (2005, 4 and 6). See, for example, Prop. I.2 (Busard 1992, 109): “Deinde
ex circuli descripcione atque ex tercia et prima comuni concepcione argumentum elice” and Prop.
I.3 (ibid).: “Deinde ergo ex circuli descripcione argumentum elicito”.
³ Heath 1956, I, 269. The diagram is taken from Zamberti, in Lefèvre 1516, I.11, 9r.
⁴ Although this work mainly only contains an adaptation of the first four books of Euclid’s Ele-
ments, its practical scope is made clear in the title. Recorde 1551, title page: Pathway to knowledg,
containing the first principles of Geometrie, as they may moste aptly be applied unto practise, bothe
for use of instrumentes Geometricall, and astronomicall and also for projection of plattes in everye
kinde, and therfore much necessary for all sortes of men.Moreover, it initially intended to go beyond
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fifth conclusion, c2v),¹ Digges’ Pantometria (Digges 1571, The first Chapter, b4r-
v.), Peletier’s De l’usage de geometrie (Peletier 1573, II, 16),² and Perez de Moya’s
Geometria practica y speculativa (Perez de Moya 1573, 23-24).³

the adaptation of Euclid’s books on plane geometry, since in the table of content, in which four
books are announced (The argumentes of the foure bookes), the third and fourth book should have
taught various constructions and applications of Euclid’s problems, which he called conclusions,
as well as procedures to measure areas and volumes of any surface and body. (The third booke in-
treateth of divers formes, and sondry protractions thereto belonging, with the use of certain conclusions.
The fourth booke teacheth the right order of measuringe all platte formes, and bodies also, by reson
Geometricall).
¹ The text quoted in the table corresponds to the specific example of a more general explanation,
which presents the construction without referring it to a specific figure. The text of this part can be
found below, 55 fn. It is then followed by an alternative case, when the point is situated close to one
of the extremities of the given line segment (c2v-c3r): “Howe bee it, it happeneth so sommetymes,
that the pricke on whiche you would make the perpendicular or plum line, is so nere the eand of
your line, that you can not extende any notable length from it to thone end of the line”.
² “D’un point donné en une ligne droitte, tirer une ligne perpendiculaire. Soit la ligne droitte AB,
& le point en elle donné, soit C: duquel point il faille mener une ligne perpendiculaire. Je fay que le
point C donné, soit le milieu de la ligne, ce qui se fera en descrivant un cercle sur iceluy point C, de
l’estendue de la plus grande portion, sçavoir est de CA, & allongeant CB, jusqu’à la circonference,
si que CD, soit egale à la portion AC. Adonque sur l’extremité A, je mets le piè ferme du compas,
& descri un Cercle: lequel soit de plus grande estendue, que n’est la demie AC. Puis le compas
demeurant en son ouverture, je descri sur l’autre extremité D, un Cercle egal au premier, et qui
l’entrecoupe au point E. Finablement du pt E, je tire une ligne au point C donné: qui sera la ligne EC,
perpendiculaire à la ligne AB donnée: c’est assavoir, que chacun des deux angles ACE & BCE sera
droit. Ce qu’avions proposé faire”. Cf. Peletier 1572, Problem II, 8: “Datam Lineam rectam bifariam
secare. Sit recta linea AB, quae bifariam, hoc est in duo aequalia, secanda sit. Super duobus extremis
A & B, describo duos Circulos aequali intervallo, maiore tamen quàm sit dimidia pars ipsius AB
datae (nam siquis in hoc haereat, possunt Circuli duci secundum intervallum totius AB) Atque ij
omnino se intersecabunt in duobus punctis oppositis, ut in C & D. Tum ab una intersectione ad
alteram, duco lineam rectam CD & erit ea quae secabit lineam AB datam bifariam, in puncto E,
Quod facere oportuit”.
³ “Capi. X. muestra de un punto propuesto en una linea, sacar otra que cayga perpendicular, o
derecha, ò en angulos rectos, sobre el punto dado, en la dicha linea. Sea la linea dada AB y el punto,
ò señal do ha de caer la otra linea perpendicular sea el punto C, abre el compas en la distancia que
quisieres, y assienta el un pie en el punto C y con el otro a una parte y otra del dicho punto C haz
dos seńales, como los dos puntos DE. Luego abre el compas mas, en la quantidad que te paresciere,
y assienta el un pie en el punto E y con el otro en la parte alta, y baxa de la dicha linea señala un
pedaço de circunferencia, y luego buelve à poner el pie del compas en el otro (punto D y estandose
en la misma abertura) haz en la parte alta y baxa otra poca de circunferencia de modo que se corte
con las otras que heziste, comomustran el punto F y el punto G. Luego echa una raya desde el punto
G al punto F y passar ajustamente por el punto C de la linea AB (que fue el lugar señalado) y por
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Table 2: Prop. I.11 of Euclid’s Elements

Euclid Recorde 1551 Digges 1571 Peletier 1573 Perez de Moya 1573
To draw a straight line
at right angles to a given
straight line from a given
point on it.

To make a
plumme line
or any pricke
that you will in
any right lyne
appointed.

Howe Perpendiculares
uppon any straight line
are erected.

To draw a perpendicular line
from a given point in a given
straight line.

(…) how to draw, from a pro-
posed point in a line, an-
other line which falls per-
pendicularly, or vertically,
or at right angles, on the
given point in that line.

Let AB be the given straight
line, and C the given point
on it. [exposition]

The lyne is
AB the prick
on whiche I
shoulde make
the plumme
lyne, is C.

Admit AB were the line
to be crossed,

Let there be the straight line
AB and let the given point
on it be C,

Let the given line be AB and
let the point, or sign,

Thus it is required to draw
from the point C a straight
line at right angles to the
straight line AB. [specifica-
tion]

that ye desired a Per-
pendiculare or plumbe
line in C,

wherefrom the perpendicu-
lar line is to be drawn.

from which the other line
should be made to fall per-
pendicularly, be the point C.

Let a point D be taken at ran-
dom on AC; let CE be made
equal to CD; on DE let the
equilateral triangle FDE be
constructed, and let FC be
joined. [constRuction]

then open I the
compasse as
wyde as AC,
and sette one
foote in C, and
with the other
doo I marke
out CA and CB,
then open I the
compasse as
wide as AB, and
make ij. arch
lines which do
crosse in D,
and so have I
doone.

open your compasse,
put the one foote in
C, make of either side
the line one pricke,
DE. Nowe extend
the compasse to the
widenesse of bothe, or
shorter, putting the
one foote in D and
the other immoveable,
making an arcke over
and under C.

I make the given point C the
middle of the line, whichwill
be done by describing a cir-
cle around this point C, ac-
cording to the length of the
greatest portion, that is, of
CA, and by extending CB
to the circumference, so that
CD be equal to the portion
AC. Hence, on the extrem-
ity A, I place the immobile
foot of the compass and de-
scribe a circle, which will be
of greater extent than the
half[-segment] AC.

Open the compass accord-
ing to any distance and place
one of the feet on the point
C, and with the other make
two marks on one and the
other parts of the point C,
such as the two points D, E.
Then open the compass ac-
cording to a greater extent,
of the quantity which ap-
pears good to you, and place
one of the feet on the point
E, and with the other, draw
out a piece of circumference
in the parts higher and lower
of the line,

This done discretely,
remove the compasse
from that Centre to E
(remaining so opened)
there fixe one foote,
with the other crosse
the arke afore made
above and beneath C,
where make two points,
or these letters FG.

Then, the compass remain-
ing with its opening, I de-
scribe on the other extrem-
ity D, a circle equal to the
first, and which will inter-
sect it at the point E.

and then place again the foot
of the compass on the other
point (the point D, and re-
mainingwith the same open-
ing), make in the higher and
lower parts another small
piece of circumference so
that it intersects with the
others that were made, as
show the point F and the
point G.

Then take a Ruler and
lay him upon bothe the
poyntes crossing the
centre C. Thus drawe
your plumbe or squire
line FCG.

Lastly, from point E, I draw
a line to the given point
C, which will be the line
EC, which is perpendicular
to the given line AB, that is
to say, that each of the two
angles ACE and BCE will be
a right angle.

Then draw a line from the
point G to the point F and
pass precisely through the
point C of the line AB (which
is in the marked out place)

consiguiente la tal linea sera perpendicular, y hara dos angulos yguales con la dada linea AB como
se demuestra por la II del I lib. de Eucli”.
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Table 2: Prop. I.11 of Euclid’s Elements

In like manner
any line may
be devided in
halfe, or circle
in four equall
parte. See the
example on the
side folowing.

Euclid: I say that the straight line FC has been drawn at right angles to the given straight line AB from C the given point on it. For, since DC
is equal to CE, CF is common, the two sides DC, CF are equal to the two sides EC, CF respectively; and the base DF is equal to the base FE;
therefore the angle DCF is equal to the angle ECF; and they are adjacent angles. But, when a straight line set up on a straight line makes the
adjacent angles equal to one another, each of the equal angles is right; therefore each of the angles DCF, FCE is right. [demonstRation]

Therefore the straight line
CF has been drawn at right
angles to the given straight
line AB from the given point
on it. Q. E. F. [conclusion]

Thus each of the two angles,
ACE and BCE, will be right
angles.Whatwas to be done.

and therefore this line
will be perpendicular and
will have two equal angles
with the given line AB, as
was demonstrated by the
eleventh proposition of the
first book of Euclid.

Indeed, when dealing for example with Prop. I.11, none of these practical ge-
ometry treatises included Euclid’s demonstration or referred to the principles
and the propositions on which this construction depends, contrary to how it
was done in classical editions of Euclid’s Elements. The construction itself is ex-
panded and constitutes the bulk of the proposition. It is also relatively different
from one text to the other, and a fortiori from Euclid’s original construction.
One common feature however is the abandonment of the equilateral triangle,
which Euclid needs to prove that the construction is geometrically valid. Since
the proof has been left aside, it is no longer needed. Indeed, in most of these
cases, the intersection of compass arcs that are used to produce the line would
not necessarily enable to construct an equilateral triangle, but an isosceles trian-
gle, which both simplifies and generalises the actual execution of the construc-
tion.¹ And in all these texts, the steps of the instrumental procedure, through
which the construction may be concretely realised, are made explicit.

¹ In Recorde’s text, the construction of the equilateral triangle certainly remains in the preliminary
general exposition of the construction (though without a diagram), but it is removed when applied
to the specific case (presented in the comparative table). See Recorde 1551, The fifth conclusion (=
the fifth problem, or Prop. I.11), c2v: “To make a plumme line or any pricke that you will in any right
lyne appointed. Open youre compas so that it be not wyder then from the pricke appoynted in the
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Second construction

For his second construction (Table 3), Scheubel proposes instructions that are
closer to those of Euclid, insofar as a circle is drawn after the extremities of the
two lines have been conjoined and in the sense that he mentions one of the
postulates on which this construction depends (i.e. the third postulate). How-
ever, it is not a line equal to the shorter line that is joined to the longer line, but
the actual given shorter line (“when the two proposed lines will somehow have
been conjoined by their extremities”), which implies that it has been somehow
moved toward the longer line through a mechanical rather than through a ge-
ometrical method, that is, not according to a mode of operation authorised by
Euclid’s prior propositions or constructive postulates.¹ This attitude, as in the
first construction, itself marks a practical approach, since Scheubel tends to free
himself from the necessity of grounding his construction on Euclid’s principles
and thus to demonstrate its geometrical validity.

In line with this attitude, Scheubel here specifies that only an arc of circle may
be drawn (“let a circle, or only an arc in place of the circle, be described”), as
is illustrated by the diagram. This diagram, in addition to leaving aside the full
circles required by Euclid’s proof, displays process traces (or compass arcs), in
the style of the diagrams often featured in practical geometry treatises (Fig. 3).

line to the shortest ende of the line, but rather shorter. Then sette the one foote of the compasse
in the firste pricke appointed, and with the other fote marke ij other prickes, one of eche syde of
that fyrste, afterwarde open your compasse to the wydenes of those ij new prickes, and draw from
them ij arch lynes, as you did in the fyrst conclusion, for making of a threlyke triangle. Then if you
do mark their crossing, and from it drawe a line to your fyrste pricke, it shall bee a iust plum lyne
on that place”.
¹ Euclid, Post. 1-3 (Heath 1956, 154): “To draw a straight line from any point to any point; To
produce a finite straight line continuously in a straight line; To describe a circle with any centre
and distance”. Previously demonstrated propositions: Prop. I.1 (Heath 1956, 241): “On a given finite
straight line to construct an equilateral triangle and Prop. I.2 (Heath 1956, 244): “To place at a given
point (as an extremity) a straight line equal to a given straight line” (my emphasis).
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Table 3: Scheubel 1550, Prop. I.3, construction 2.

Euclid Scheubel
At the point A let
AD be placed equal
to the straight line C;
[i. 2] and with centre
A and distance AD
let the circle DEF be
described. [Post. 3]

The second is when
the two proposed
lines will somehow
have been conjoined
by their extremities,
then, by the third
postulate, let a circle,
or only an arc in
place of the circle, be
described from their
point of conjunction, that is, which cuts
the longer straight line according to the
quantity, or according to the interval, of
the shorter, and the same will have been
accomplished.

Now, since the point A is the centre of the
circle DEF, AE is equal to AD. [Def. 15] But
C is also equal to AD. Therefore each of the
straight lines AE, C is equal to AD; so that
AE is also equal to C. [C.N. 1]

The demonstration [of this operation] is the
above-given definition of the circle, since the
lines that fall from the centre to its circum-
ference are equal to each other, by the same
[definition].b

a Euclid, Prop. I.3 (Heath 1956, I, 246-247): “Secunda est, ut lineae propositae duabus suis extremitatibus
utcunque coniungentur, secundum quantitatem deinde, vel intervallum brevioris, ex coniunctionibus
puncto, per tertium postulatum, circulus, vel arcus, vel arcus tantum circuli loco, qui tamen longiorem
rectam secat, describatur: & idem effectum erit. Huius autem demonstratio est ipsa circuli definitio
supra tradita, cum lineae à centro in circumferentiam cadentes, per eandem, inter se sint aequales”.
b Scheubel 1550, I.3, 84: “Secunda est, ut lineæ propositæ duabus suis extremitatibus utcunque coniun-
gentur, secundum quantitatem deinde, vel intervallum brevioris, ex coniunctionis puncto, per tertium
postulatum, circulus, vel arcus tantum circuli loco, qui tamen longiorem rectam secat, describatur:
& idem effectum erit. Huius autem demonstratio est ipsa circuli definitio supra tradita, cum lineæ à
centro in circumferentiam cadentes, per eandem, inter se sint æquales”.
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a) b)

Figure 3: a) Perez de Moya, Tratado de geometria practica, 1573; b) Dürer,
Underweysung der Messung, 1525.

As was shown by E. Lee,¹ such diagrams, that displayed process traces in the
form of compass arcs, became increasingly present within sixteenth-century
printed editions of Euclid’s Elements. Lee interpreted this (accurately, I believe)
as a witness of the influence of practical geometry on Euclidean geometry in
the early modern era.²

Similarly to the first construction, Scheubel’s proof is then reduced to a mere
reference to Euclid’s definition of the circle (“The demonstration is [founded
on] the above-given definition of the circle”).

Third construction

If Scheubel’s third construction (Table 4) is more faithful to Euclid’s construc-
tion, insofar as it appeals to Prop. I.2 to place, at one extremity of the longer line,
a line that is equal to the given shorter line, he then only refers to the construc-
tion taught in the second operation and does not provide any demonstration.

In addition to the fact that Scheubel’s treatment of Prop. I.3 offers the possibil-
ity to choose the construction that is most appropriate to one’s situation, what
evokes here the treatment of Euclid’s propositions found in practical geometry
treatises is not only the direct appeal to instrumental procedures and the reduc-
tion or suppression of the proof, but also the freedom taken with the structure

¹ Lee 2018. See also Lee 2020, 488-498.
² Lee 2018, 12-14 and Lee, 533-536.
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Table 4: Scheubel 1550, Prop. I.3, construction 3.

Euclida Scheubel
At the point
A let AD
be placed
equal to
the straight
line C; [i.
2] and with
centre A
and distance
AD let the
circle DEF be described. [Post. 3]

The third operation [re-
quests] that, by the preced-
ing second proposition, a
line equal to the shorter
line first be led from any
of the extremities of the
longer, just as from any
given point, and then, ac-
cording to what the second operation requires, let
a line equal to it be cut off from the longer, and,
thirdly, what the proposition requested has been
done.b

a Euclid, Prop. I.3 (Heath 1956, I, 246-247). b Scheubel 1550, I.3, 84: “Tertia huius operatio est, ut, per
præcedentem propositionem secundam, primò ab extremitate longioris alterutra, tanquam à puncto
aliquo dato, linea breviori aequalis educatur: atque huic deinde à longiore, prout secunda huius oper-
atio exigit, æqualis abscindatur, & tertiò, quod volebat propositio, factum erit”.

of the proposition. This is also shown by the fact that Scheubel systematically
suppressed the lettering of the diagram.¹

2.2. Addition of commentary sections specifically dedicated to
the practical treatment of a given proposition

Among the authors who added to a commentary section specifically dedi-
cated to the practical treatment of the proposition, after providing Euclid’s clas-
sical proof, was Niccolò Tartaglia, in his 1543 Italian translation and commen-

¹ Scheubel chose not to use any lettering for his diagrams, which is something he announced al-
ready in the title of his work (absque literarum notis). In his prefatory epistle (Scheubel 1550, a3r-4r),
he justified this by claiming that it is more conform to the approach Euclid had originally adopted
when he wrote the Elements and also because it would make Euclid’s propositions more accessible
to beginners, such as the students from the university of Tübingen, who, according to his experi-
ence, would get confused by the abundance and variations of letters.
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tary of Euclid’s Elements (based on the medieval Latin text of Campanus¹), in
his commentary on Prop. I.1, which teaches how to draw an equilateral triangle
on a given line (Fig. 4, a).²

The translator. It must be noted that when one simply needs to describe the equilateral
triangle on a given straight line, that is, when one does not need to demonstrate this
operation, it is not necessary to describe the two circles entirely, but it merely suffices to
draw the small part where they intersect in point D (as it appears in the second diagram)
and to draw from the point D the two lines DA and DB and the triangle will be drawn.
But when wanting to demonstrate and to determine the cause for which it is equilateral,
it will be necessary to complete the two circles and to argue as was done above. The
same thing is to be understood in many of the following problems.³

¹ Although Tartaglia also knew the translation of Zamberti and considered it philologically more
accurate than Campanus’ version of the Elements, he chose to base his Italian translation on the text
of Campanus. One of the arguments he gave for follow Campanus rather than that of Zamberti for
the translation of some of Euclid’s technical terms was that his text proposed words that were
more widespread and therefore more familiar to the common readers of Latin and vernacular texts
(Tartaglia 1543, 6r).
² Tartaglia 1543, I.1, 15v: “Problema prima. Propositione prima. Possiamo sopra una data retta linea
costituir un triangolo equilatero. Sia la data retta linea AB. voglio sopra di questa constituir uno tri-
angolo equilatero. & per esequir tal cosa, io ponero il piede immobile del mio compasso, over sesto,
sopra l’uno delle estremita della linea, cioe, in ponto A & l’altro piede mobile lo allargarò infino
all’altra estremita, cioe, al ponto B & secondo la quantita di essa linea data per la terza petitione,
descrivero il cerchio CBDF, dapoi questo di novo farò centro l’altra estremita di essa linea, cioe, il
ponto B & per la medesima petitione (secondo la quantita della medesima linea) linearò il cerchio
CADH, liquali cerchi se intersecaranno fra loro in duoi ponti, liqual sono C & D & l’uno de detti
(poniamo il ponto D) continuarò con ambedue le estremita della data linea, tirando per la prima
petitione le due linee DA & DB, et cosi sera constituido, il triangolo dab, ilqual dico esser equilatero:
perche, dal ponto A ilqual è centro del cerchio CBDF sono tirate le linee AD & AB per infino alla
circonferentia di quello, perilche seranno equale, per la diffinitione del cerchio, similmente anchora:
perche, dal ponto B che è centro del cerchio CAD sono tirate le linee BA & BD per infino alla circon-
ferentia di quello, quelle medesimamente seranno fra loro equale. Adonque perche l’una e l’altra
delle due linee AD & BD è equale alla linea AB (come di sopra fu approvato) quelle medesime ser-
anno anchora fra loro equale, per la prima concettione. Adonque sopra la data retta linea habbiamo
collocato un triangolo equilatero, che è il preposito”. Cf. Campanus 1482, a2v-a3r and Heath 1956,
I, 241-242.
³ Tartaglia 1543, Prop. I.1, 15v: “Il Tradottore: Bisogna notar che quando l’occorresse di descriver
semplicemente il detto triangolo equilatero sopra una data retta linea, cioe, che’l non fusse di
bisogno à far la demostratione di tal operare, non è necessario di descriver integralmente li detti
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Figure 4

a) b)

In this context, Tartaglia presented the method to construct an equilateral
triangle when it is not required to prove the geometrical validity of the con-
struction, that is, to demonstrate that it properly allows to produce an equi-
lateral triangle and that it has been carried out by operations authorised in the
framework of Euclid’s geometry, but only to effectively construct an equilateral
triangle. As he explains then, this is done by merely drawing two intersecting
arcs of circle according to the interval of the given line with a compass that
maintains an opening equal to the length of the given line. This approach is
properly practical insofar as it enables to know how to effectively obtain the
requested figure without demonstrating why this construction is appropriate
to this aim. As Tartaglia notes in conclusion, the same approachmay be applied
to many other Euclidean problems.

A similar discourse is also found in the 1562 German translation by the Hei-
delberg university professor Wilhelm Holtzmann (Xylander), in the commen-
tary on Prop. I.1, after providing Euclid’s original proof (Fig. 4, b).¹

duoi cerchi, ma basta solamente à designar quella poca parte dove fanno la intersecatione in ponto
D (come appare nella seconda figura) & dal detto ponto D tirar le due linee DA & DB & sera des-
ignato il detto triangolo: ma volendo dimostrar, & assignar la causa che quel sia equilatero egli e
necessario à compire li detti duoi cerchi, & arguire come di sopra fu fatto: il medesimo si debbe
intendere in molte delle sequente probleme”.
¹ Although it is not the point here, it may be useful to note furthermore, regarding his treatment
of Euclid’s actual proof, even if Xylander’s German version of the proposition is rather faithful to
Euclid’s text, at least more than the Latin text of Scheubel, in the sense that he follows the same
construction procedure and offers a diagram and a lettering conform to the more classical treat-
ment of the proposition, he nevertheless formulated Euclid’s discourse in a more straightforward
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Advice. May the beginners, with this, be advised and instructed that it is not necessary
to trace out the two circles entirely, or to make them visible, but it suffices that you make
with the compass two hidden traces according to the length of the given line, which go
through each other crosswise.Then, what remains from such a circle is only useful to the
demonstration.This is likewise to be understood in other propositions.What dimensions
you should make an isosceles or a scalene triangle is taught by the following proposition
22, etc.¹

In this commentary, which is entitled “Warnung” (which can be translated
here as “Advice” or “Tip”), Xylander addresses the unlearned reader (“der ain-
feltige”). The guidance offered is approximately the same as that which was
provided by Tartaglia in the sense that it teaches how to perform the construc-
tion when no demonstration is needed. He also notes that this situation applies
to other propositions of Euclid.

In Henry Billingsley’s 1570 English translation and commentary of Euclid’s
Elements, which remained overall faithful to Euclid’s text such as translated by
Zamberti (even in comparison to Heath’s modern translation),² most of the com-

and hands-on manner, using more common terms and referring to the use of the compass, which
he uses, along with the observation of the diagram, as a means to empirically deduce the truthful-
ness of the construction. Xylander 1562, I.1, 6: “Wiewol dise proposition leichtlich mag verstanden
werden, auß beigesetzter figur, will ich sich je doch (diewil sy die erst) weitleffig erkleren. (…) sol-
licher lini lenge begreiff ich mitt einem zirckel, unnd setz den ainen fuß in den puncten A und reiß
mit dem andern den zirckel BCD darnach setz den ainen fuß in den puncten B unnd reiß den zir-
ckel ACE dise zwen zirckell werden on zweiffel gleich sein, dann sy baid mit onverruckhten zirckel, in
ainer weittin beschribenn” (my emphasis). Moreover, Xylander (ibid.) then clearly distinguished the
construction from the proof, attributing to each of them a separate title: “Figur und Erklaͤrung der
ersten Proposition”. And “Demonstratio, das ist, Grund und ursach diser Operation”.
¹ Xylander 1562, I.1, 7: “Warnung:Will hiemitt den ainfeltigen ermantt haben, unnd gewarnet. Das
nit vonnötten die zwen zirckel gar außzureissen, oder die selben offenbar zumachen, sonder gnug
ist, so du zwen verborgne riß, in der gebnen lini lenge, mit dem zirckel machest, die creutzweiß durch
einander gehn. Dann das uberig von sollichem zirckel, dienet nur zur Demonstration, deßgleichen
solt auch in andern verstehn. Welcher massen du ain gleichfussigen oder gar ungleichen triangell
machen sollest, lehrt die 22 volgendt Propos. &c.”.
² Billingsley 1570, I.9, 18r: “The 4. Probleme. The 9. Proposition. To devide a rectiline angle geven,
into two equall partes. Suppose that the rectiline angle geven be BAC. It is required to devide the
angle BAC into two equal partes. In the line AB take a point at all adventures, & let the same be
D. And (by the third proposition) from the lyne AC cutte of the line AE equall to AD. And (by
the first peticion) draw a right line from the point D to the point E. And (by the first proposition)
upon the line DE describe an equilater triangle and let the same be DFE, and (by the first peticion)
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mentary on the problems of Book I are concluded by a separate and clearly
delimited practical section, teaching for instance in Prop. I.9 how “to devide a
rectiline angle into two equall parts Mechanically” (Table 5).¹

As Billingsley writes at the very beginning, “mechanically” in this context is
equivalent to “readily”, which means “promptly” or “easily”, but also without
the demonstration. Billingsley thus aims to present a non-demonstrative but
efficient and instrumental technique to perform the requested constructions, as
did Tartaglia and Xylander.

As the latter, Billingsley makes explicit the use of the compass to perform
the construction, which he had not done in his translation of Euclid’s proof
(contrary to Tartaglia and Xylander).The deictic words and sentences used here
by Billingsley (“And here note”; “As in the figure here in the end of the other
side put”) are also marks of a practical discourse, since it allows him to address
the reader directly and to contextualise his teaching, at least hypothetically and
in the framework of the book. Such deictic sentences, which are not uncommon
in commentaries of Euclid’s Elements, held a crucial place in practical geometry
treatises insofar as they often invited to understand or deduce the content of
the teaching by simply looking at the diagram.

A similar approach is again proposed in the Latin commentary on Euclid’s
Elements by the Jesuit professor Christoph Clavius, first published in 1574. Clav-
ius’s treatment of Euclidean problems, also exemplified by Prop. I.9, is quite sim-
ilar to that of Billingsley, insofar as he remains quite faithful to Euclid’s proof²

drawe a right line from the poynte A to the point F. Then I say that the angle BAC is by ye line AF
devided into two equal partes. For, forasmuch as AD is equall to AE, and AF is common to them
both: therfore these two DA and AF, are equall to these two EA and AF, the one to the other. But
(by the first proposition) the base DF is equall to the base EF: wherfore (by the 8. proposition) the
angle DAF is equal to the angle FAE. Wherfore the rectiline angle geven, namely, BAC is devided
into two equal partes by the right line AF, Which was required to be done”. Cf. Zamberti 1505, a4v
and Heath 1956, I, p. 264.
¹ In the commentary on Prop. I.9, this section follows several sections presenting related problems
left aside by Euclid, such as the trisection of the angle (Billingsley 1570, 19r: “For to devide an acute
angle into three equal partes, is (…) impossible: unles it be by the helpe of other lines which are of a
mixt nature”)., responses to objections (19r: “Here against this proposition may of the adversary be
brought an instance. For he may cavill that the hed of the equilater triangle shall not fall betwene
the two right lines, but in one of them, or without them both”). or alternative demonstrations (19r-v:
“Divers cases in this proposition”).
² Clavius 1611-1612, I.9, 35: “Problema 4. Propositio 9. Datum angulum rectilineum bifariam facere.
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Table 5: Billingsley 1570, Prop. I.9.

Euclid, Prop. I.9 Billingsley, Prop. I.9 – Commentary, Part 4:
Practical interpretation

Marginal
notes

Let a point D be
taken at random on
AB; let AE be cut
off from AC equal
to AD; [I. 3] let
DE be joined, and
on DE let the equi-
lateral triangle DEF
be constructed; let
AF be joined.a

This is to be noted, that if a man will mechani-
cally or readily, not regardyng demonstration,
devide the foresaid rectiline angle BAC, and
so any other rectiline angle geven whatsoever,
into two equall partes, he shall neede onely
with one opening of the compasse taken at all
adventures to marke the two pointes D and
E, which cut of equal partes of the lin es AB
and AC, howsoever they happen, and so mak-
ing the centres the two points D and E, to de-
scribe two circles according to the openyng of
the compasse: and from the point A to their in-
tersection, which let be the point F to draw a
right line: which shall devide the angle.

To devide
a rectiline
angle into
two equall
parts Me-
chanically.

a Euclid, Prop. I.9 (Heath 1956, I, 264).
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a) b)

Figure 5

and was careful to provide a practical treatment of the proposition only in a
clearly separate part. In this framework, the sections teaching how to perform
the construction in practice are entitled praxis to explicitly mark their practical
status and intention.

Practice. By what has been said, any rectilinear angle, such as BAC [Fig. 5, a], will be
bisected quickly in the following manner: From the centre A, let the equal straight lines
AD, AE be cut off with a compass according to any quantity. And with the compass
remaining in the same position (you can change it however, if you want), let two arcs
be drawn around the centre D and E which intersect in F. Therefore, the drawn straight
line AF will bisect the angle BAC. If indeed the straight lines DF, EF have been led, these
will be equal, as the radii of equal circles necessarily are. Wherefrom, as will have been
demonstrated before, the angle DAF is equal to the angle EAF.¹

Sit dividendus rectilineus angulus bac, bifariam, hoc est, in duos angulos æquales. In recta AB,
sumatur quodcunque punctum D, & rectæ AD, secetur ex AC, recta AE, æqualis, ducaturque recta
DE. Deinde super DE, constituatur triangulum æquilaterum DFE, & ducatur recta AF, dividens
angulum BAC, in angulos BAF, CAF. Dico hos angulos inter se esse æquales. Cum enim latera
DA, AF, trianguli DAF, æqualia sint lateribus EA, AF, trianguli EAF, utrumque utrique, quod DA,
ipsi EA, per constructionem, sit æquale, & AF, commune; Sit autem & basis DF, basi EF, æqualis,
propterea quod triangulum DFE, constructum est aequilaterum: Erit angulus DAF, angulo EAF,
æqualis, ideoque angulus BAC divisus bifariam, quod erat faciendum”. Cf. Commandino 1572, 12r
and Heath 1956, I, 264.
¹ Clavius 1611-1612, I.9, 35: “Praxis. Dicto citius angulus quilibet rectilineus, ut BAC, bifariam se-
cabitur, hoc modo. Ex centro A, circino aliquo abscindantur rectae aequales AD, AE, cuiuscunque
magnitudinis. Et circino non variato (posses tamen ipsum variare, si velles) ex centris D, & E, de-
scribantur duo arcus secantes sese in F. Recta igitur ducta AF, secabit angulum BAC, bifariam. Si
enim ducerentur rectae DF, EF, essent hae aequales, nempe semidiametri circulorum æqualium.
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As in Billingsley’s “mechanical” construction, Clavius’ praxis is presented as
a means to perform the requested construction in a quicker manner, which is
again enabled by the use of the compass and by leaving aside the construction
steps required for the demonstration, that is, the construction of the line de
and of the equilateral triangle def.¹ During the enumeration of these different
steps, Clavius also offers practical tips in parentheses, explaining directly to the
reader that he can choose to adopt a different opening of the compass during
the second step of the construction, if he wants, indicating that the construction
of an isosceles triangle is as effective as that of an equilateral triangle to obtain
the requested construction.

Now, if Clavius’ intention in his praxis was to teach how to perform the con-
struction in a quicker manner, he did not totally dismiss the demonstration,
since he briefly referred to it when he mentioned the equality of the angles daf
and eaf (“Wherefrom, as will have been demonstrated before, the angle DAF is
equal to the angle EAF”), indicating that the practical construction is founded
on the same principles as the original construction. He thus showed that, even
if the lines necessary to Euclid’s proof are not made visible in the practical con-
struction, its various steps are nevertheless founded on the same principles as
the original construction.

Nevertheless, Clavius expressed reservations concerning the intelligibility of
Euclid’s construction, and of the correlated diagram, in comparison with those
accomplished by the means of “pure practice” (“nuda praxis”), insofar as they
would generate confusion rather than clarity due to the great number of lines
that make up Euclid’s diagram.

unde ut prius demonstrabitur, angulum DAF, aequalem esse angulo EAF”.
¹ Raynaud (Raynaud 2015, 11) interprets Clavius’ praxes as exempla, in the sense of application of
the reasoning to a particular problem. Lee, on the other hand, wrote on these sections of Clavius’
commentary: “the establishment of a praxis section can be interpreted as an attempt to assemble
the tradition of transcribed diagrams in manuscripts and the new trend of tool-based diagrams in
printed editions” (Lee 2018, 18). I think that this notion has a larger scope than what is suggested
by either of these definitions, aiming to represent a section in which Clavius taught a version of
Euclid’s construction that is focused on the means to obtain it, that is, the operations required to
produce it concretely and effectively, rather than on the causes of its accuracy, similarly to how it
was taught by Tartaglia, Xylander and Billingsley. Its practical character, which is acknowledged in
the title, is marked by its emphasis on doing over knowing, which does not however mean that the
taught construction is not mathematically valid, as I will show further.
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But we have not described the above-mentioned lines, so that pure practice could be
used, which we will observe in the other practices as much as it is possible, so that the
multitude of the lines does not set us in the dark and create confusion.¹

Therefore, the praxis for Clavius would not only serve as a means to perform
the construction more promptly, but would also make the proposition easier
to understand. In the scholium that follows this practical section, in which he
started by mentioning the complex and mechanically generated curves through
which ancient mathematicians proceeded to solve the famous problem of the tri-
section of the angle (as had Billingsley in his commentary),² Clavius also briefly
taught the manner in which an unlearned person would divide a given rectilin-
ear angle in any number of equal angles.

But meanwhile, if someone wanted to divide any given rectilinear angle in any number
of equal parts in the manner of the unlearned, as could be said, it will be necessary for
them to use a compass, so that by making an attempt and by repeating this practice
several times, they will thereby surely reach the desired aim by this means. Let the an-
gle BAC [Fig. 5, b] be a rectilinear angle which is to be divided in 5 equal angles. From
A taken as a centre, let the arc of circle BC be described with any interval, cutting the
straight lines AB, AC, in B, and C. Then let this arc be divided by the means of the com-
pass (sometimes opening, sometimes closing its legs further until they have the required
distance) in as many equal parts as the proposed angle is to be divided in, as in five parts
in the points D, E, F, G in the provided example.³

According to this manner, Clavius advised the reader to use a compass whose

¹ Clavius 1611-1612, 35: “Non descripsimus autem dictas lineas, ut nuda praxis haberetur: Id quod
in aliis quoque praxibus, quoad eius fieri poterit, observabimus, ne linearum multitudo tenebras
nobis offundat, pariatque confusionem”.
² Billingsley 1570, 19r: “It is impossible to devide an acute rectiline angle into three equall partes
without the helpe of lines which are of a mixt nature”.
³ Clavius 1611-1612, I.9, 35: “Interim vero, si quis angulum rectilineum quemcunque propositum in
quotvis partes aequales dividere desideret rudi, ut dicitur, Minerva, uti eum necesse erit circino, ut
quasi attentando, & saepius repetendo praxim ipsam, ad finem desideratum perveniat, hac nimirum
ratione. Sit angulus rectilineus BAC, dividendus in 5 angulos æquales. ExA, centro describatur arcus
circuli BC, ad quodcunque intervallum, secans rectas AB, AC, in B, & C. Deinde hic arcus beneficio
circini (eius crura modo dilatando magis, modo restringendo, donec debitam habeant distantiam)
dividatur in tot partes æquales, in quot angulus propositus est dividendus, ut in exemplo proposito
in quinque partes in punctis D, E, F, G”.
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opening is increased or decreased until the needed interval is obtained so that
the angle be approximately divided in the desired number of equal parts, pro-
ceeding therefore by trial and error.

Hence, the teaching provided in the last examples show that “practical” here
is not merely related to the use of instruments and to the fact of performing
a construction concretely, but also the fact of leaving aside the demonstration
(even if it underlies a given practice) to focus on the gestures and operations to
perform to concretely obtain the sought figure, notably in order to save time. In
this sense, this construction, just as the practical construction presented before
by Clavius and those taught by Tartaglia, Xylander and Billingsley evoke the
notion of “constructive geometry” which L. Shelby used to describe the teaching
of medieval master masons, and which is never “mathematically demonstrated
to be correct”.¹

2.3. Empirical approaches to Euclid’s theorems

Given their speculative finality,² theorems did not invite the translators and
commentators of Euclid to apply a practical approach as much as problems,
which is notably why we can only rarely find theorems in practical geometry
treatises, as opposed to problems.³ And when commentators of Euclid did pro-
pose a more practical interpretation of a given theorem, the practical character

¹ Shelby 1972, 413.
² Proclus (Friedlein 1873, 77; transl. Morrow 1992, 63): “The propositions that follow from the
first principles he divides into problems and theorems, (…) the latter concerned with demonstrating
inherent properties belonging to each figure”.
³ Notable exceptions are Recorde and Digges. But while Digges, who only quotes a handfull of
theorems, merely provides the enunciations, Recorde provides proofs for the theorems (for Books I-
IV).These proofs, which are called examples, are however not those found in the classical Euclidean
text, but mostly practical proofs, using numbers for instance (as in Prop. I.4 or The first Theoreme,
c1r-v), or purely descriptive proofs, pointing to the parts of the diagram, referring to Euclid for the
proper demonstration of the proposition. E.g. Recorde 1551, Prop. I.5, c1v-c2r: “The secondTheoreme.
In twileke triangles the ij corners that be about the ground line, are equal togither. And if the sides
that be equal, be drawen out in length then wil the corners that are under the ground line, be equal
also togither. Example. ABC is a twileke triangle, for the one side AC, is equal to the other side
BC. And therfore I saye that the inner corners A and B, which are about the ground lines, (that is
AB) be equall togither. And farther if CA and CB bee drawen forthe unto D and E, as you se that I
have drawen them, then saye I that the two utter angles under A and B are equal also togither: as
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of the chosen approach is not as evident as in the case of problems. In this con-
text, the practical treatment of theorems mainly consisted in the addition of
empirical arguments (notably by visual means) or in the use of computations,
which would offer a more immediate or “hands-on” means of verification of the
demonstrated quantitative relation between figures or lines.¹ In this framework,
an empirical approach to Euclid’s theorems appears, for instance, when deal-
ing with Prop. I.4, which proves the congruence of two triangles by superposi-
tion,² and which Peletier (as mentioned above) had rejected as a mechanical and
non-geometrical mode of demonstration in his commentary on the Elements.³
Peletier’s rejection was due to the fact that he interpreted it as a constructive
procedure (instead of a hypothetical reasoning) and that it would therefore not
be legitimated by any constructive postulate, relying solely on an empirical
mode of assessment of the congruence of geometrical figures. Although Prop.

the theorem said. The profe wherof, as of al the rest, shal apeare in Euclide, whome I intende to set
foorth in english with sondry new additions, if I may perceaue that it wilbe thankfully taken” (my
emphasis).
¹ The fact of performing a computation, as determining the area of a given rectilinear figure from
the knowledge of the quantities of its sides, may indeed be regarded as a practical and empirical
means of verification of a given theorem enunciating the quantitative relation between two figures
(e.g. the equality of triangles with equal bases and in the same parallels in Prop. I.38), since readers
find themselves able to mentally manipulate the considered geometrical objects by operating on the
quantities of their parts, following a set of practical rules most often taught in treatises of practical
arithmetic. By comparison, the fact of following a demonstration based on prior propositions or
principles and on rules of logical deductions, even if possessing a practical character based on the
application of logical precepts, would correspond, for the reader of Euclid’s Elements, to a mostly
passive and purely rational means of verification of the truth of the theorem. The properly practi-
cal and empirical character of the use of computations in this context is asserted by Tartaglia (in
Tartaglia 1543, Df. V.9, 64v: “spesse volte il studente che vede con la esperientia de numeri verifi-
carse la propositione preposta, non si cura di intendere quella per demostratione”) and Xylander
(in Xylander 1562, I.35, 22: “so du die warhait und gwiß diser und volgender prop. durch rechnung
in ealen erfaren woͤlltest (wellichs seer nutzlich zu dem das es kurtzweilig und lustig ist”).
² Euclid, Prop. I.4 (Heath 1956, I, 247): “If two triangles have the two sides equal to two sides
respectively, and have the angles contained by the equal straight lines equal, they will also have
the base equal to the base, the triangle will be equal to the triangle, and the remaining angles will
be equal to the remaining angles respectively, namely those which the equal sides subtend”.
³ Peletier, Euclidis elementa, 1557, I.4: “Figuras Figuris superponere, Mechanicum quippiam esse:
intelligere verò, id demum esse Mathematicum”. On Peletier’s rejection of superposition and the
early modern debate on Euclid’s use of superposition, see Mancosu (1996, 29-31), Loget (2000, 171-
177), Palmieri (2009, 474-476) and Axworthy (2018).
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I.4 gave rise to different types of practical treatments, I will here only focus on
the cases of Scheubel and Xylander, as they most conspicuously manifest an
empirical approach to this proposition.

After presenting the exposition and specification of Prop. I.4, which state
what is given and what is to be demonstrated,¹ Scheubel wrote that a visual
demonstration of this proposition (ocularis quaedam demonstratio) is admissi-
ble and even ought to be admitted, since “the thing appears to the sense nearly
as it is”.

A visual demonstration of this thing ought to be admitted at this point. But if someone
wanted to immediately deny this, because the thing appears to the sense nearly as it
is, and is evident insofar as it is true and known to all, it follows that he will finally be
compelled to admit the opposite, That two straight line comprise a space, by a reduction
to absurdity.²

Although Scheubel provides at this stage the more classical diagram of two
identical triangles placed side by side (only without the lettering³), the assertion
of the possibility to prove this proposition through a visual demonstration is
connected to the diagram Scheubel provides towards the end of the proposition
(Fig. 6, a). This diagram aims to visually demonstrate the impossibility of the
case when the bases of two superposed triangles are not congruent although
the two remaining sides and the contained angle are mutually equal.

¹ Euclid, Prop. I.4 (Heath 1956, I, 247): “Let ABC, DEF be two triangles having the two sides AB, AC
equal to the two sides DE, DF respectively, namely AB to DE and AC to DF, and the angle BAC equal
to the angle EDF. I say that the base BC is also equal to the base EF, the triangle ABC will be equal
to the triangle DEF, and the remaining angles will be equal to the remaining angles respectively,
namely those which the equal sides subtend, that is, the angle ABC to the angle DEF, and the angle
ACB to the angle DFE”. Cf. Scheubel 1550, Prop. I.4, 85: “Praescribantur huiusmodi duo triangula,
qualia haec propositio requirit, quorum nimirum unius duo latera, duobus lateribus alterius æqualia
sint: atque angulus deinde sub aequalibus lateribus unius, angulo sub aequalibus trianguli alterius
comprehenso aequalis: dico quod & horum triangulorum bases, ipsa quoque triangula tota, atque
reliqui anguli reliquis angulis utrinque inter se aequales sint”.
² Scheubel 1550, Prop. I.4, 85: “Huius rei nunc accedere deberet ocularis quaedam demonstratio:
sed quia ad sensum quasi ita sese habere res apparet, & evidens est, tanquam vera atque omnibus
nota relinquitur, cum statim, hoc si quis negare velit, oppositum eius, ad extremum, Quod duae
rectae spacium compraehendant, ut sequitur, fateri cogatur, reductione ad absurdum”.
³ As said, Scheubel systematically suppressed the lettering that is applied to Euclid’s diagrams in
the more classical editions.
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a)¹ b)

Figure 6: a) Scheubel 1550, I.4, p. 86; b) Campanus 1482, I.4, a3v.

This diagram actually has the same function as the more classical diagram of
Prop. I.4 found for instance in Campanus (Fig. 6, b). However, the dotted lines
aim to properly display at a glance the impossibility of the hypothesis envisaged
in Euclid’s proof.

In order to facilitate the reading of the diagram, Scheubel also explains, in his
Admonitio, the function of the drawn dots, and of the dotted lines thereby,² in
the interpretation of Euclid’s reductio ad absurdum.

Notice. The argument leading to absurdity is represented by points in the figures, since
he who does not easily concede this to be true will finally be convinced by some re-
duction to impossibility, so that he will somehow, through the repugnance to absurdity,
withdraw in favor of the confession of the truth, which the readers will find here, as also
in other places, through the drawing of points.³

Hence, Scheubel’s approach to Euclid’s theorem can be considered practical
in the sense that it heavily relied on visual inference to persuade readers of
the truth of the theorem, inviting them to mentally reconstruct the steps of
the demonstration by means of the diagram and thus to gain a first-hand ex-
perience of its truth. It was indeed common, in practical geometry treatises to

² On the use and function of dotted lines in the sixteenth-century Euclidean tradition, see Lee 2018
and Lee 2020, 520-524.
³ Scheubel 1550, I.4, 85-86: “Admonitio. Per puncta in figuris, representatur ratio ducens ad ab-
surdum, ut qui facilis non esset in concedendo id quod verum est, tandem convincatur reductione
quadam ad impossibile, ut hac offensione absurditatis quodammodo resiliat ad confessionem veri.
Quod ut hoc loco, ita etiam alijs locis à me factum reperient Lectores, designatione punctorum”.
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a) b) c)

Figure 7: a) Bullant, Geometrie et horologiographie pratique, 1562; b) Merliers, La
practique de géométrie, 1575; c Clavius, Geometria practica, 1604.

simply point to the diagram and invite the reader to proceed from there with
the deduction of the proposition rather than to offer a formal demonstration of
a proposition, as in Bovelles’s Geometrie practique.¹

Moreover, Scheubel’s appeal to dotted lines introduced a kind of diagram that
was often found in sixteenth-century practical geometry treatises (Figs. 7, a-c).²

Even if Scheubel did also provide the textual demonstration ad absurdum
found in Euclid’s original text, the fact that he asserted here the value of the
visual demonstration and of sensed evidence contrasts with the representation
of Euclidean mathematical demonstrations as purely rational, as was presented,
for instance, in Foix-Candale’s commentary on Euclid.³

¹ Bovelles 1547, I.26, 11r : “une ligne droicte ne peust toucher un cercle sur deux poincts: mais
sur un seul. Ce est assez evident pat tout, & se peust facilement entendre par les figures cy devant
descriptes”. and I.27, 11r: “Si deux cercles touchent l’un l’autre, ce sera sur les seul poinct: sur lequel
une mesme droicte ligne un peust toucher tous deux. Regarde la presente figure, & clerement enten-
dras le propos. Car la ligne ABC, touche deux cercles sur un mesme poinct, sur lequel pareillement
lesdicts cercles touchent l’un l’autre, sans soy diviser aucunement, & sans copper ladicte ligne ABC”
(my emphasis).
² Admittedly, these examples were published later than Scheubel’s Euclid, but it shows how com-
mon it was to find such diagrams in practical geometry treatises. Moreover, the sixteenth-century
commentators or editors of Euclid’s Elements that made use of dotted lines are among those who
adopted the most practical approach to Euclid’s propositions, such as Xylander (e.g. I.7, 9), Pierre
Forcadel (e.g. I.43, 36v), Billingsley (e.g. Df. VI.6, 155r), Clavius (e.g. I.11, 36-37) and Dou (e.g. I.5, 4).
³ Foix-Candale, Euclidis elementa, 1566, I.4, 5v: “Nam Campanus ac Theon hanc demonstrantes,
triangulum triangulo superponunt, angulumque angulo, sive latus lateri, demonstrationem potius
instrumento palpantes, quàm ratione firmantes: quod tanquam prorsus alienum à vero disciplinarum
cultu reiicientes”. See supra, §1.9.
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Xylander’s treatment of Prop. I.4 is quite similar to Scheubel’s in the sense
that, after providing the exposition and specification, he stated that this theo-
rem, if it can be proved and demonstrated, should be considered as evident.

This proposition concerns in general a property of the triangle, when two triangles are
held against each other and compared. (…) Now in order to understand this proposition,
take the two triangles A and B drawn here on the side. The triangle A has two lines or
sides equal to the two lines of the triangle B, namely, the line AB is equal to the line DE,
and BC to the line EF, also the angle ABC (…) is equal to the angle DEF, that is, to the
angle on which stands the letter E. Therefore, from this, it is certain that the line AC is
also equal to the line DF and that the angle BCA is equal to the angle EFD. Then, they
will be, as shown, subtended by equal lines, as AB and DE. The angle BAC (however
big it is), is also contained by lines equal to those which contain the angle EDF, equal to
it. From this, it follows finally that the whole triangle A must to be equal to the whole
triangle B, which should not only be considered as evident (augenscheinlich), but may be
proved and demonstrated. I leave this out. The cause is indicated above.¹

In this passage, Xylander seems to take for granted that Prop. I.4 is evident,
since as he writes towards the end that, in addition to the fact that it is evident,
this proposition may also be proved and demonstrated, which is what Euclid
did.

The German adverb augenscheinlich used here by Xylander fully conveys the
Latin notion of evidentia, as what is plainly visible (from ex + video), but it does
so in a properly concrete manner, specifically pointing to the vision of the eye
(auge), instead of vision in general, which could be ocular or intellectual. The
empirical character of evidence in this context is supported by the fact that, in

¹ Xylander 1562, I.4, 8: “ Dise proposition begreifft in gemain ain aigenschafft des triangels, so zwen
gegen einander gehalten und vergleicht werden. (…) Nun zuverstehn dise proposition, Nim fur dich
die zwen hieneben verzaichneten triangel A und B, der triangel A hat zwo linien oder seitten gleich
den zwo linien des triangells B, nemlich die lini AB ist gleich der lini DE, und BC der lini EF, auch
der winckel ABC (…) ist gleich dem winckel DEF, das ist dem winckel darob der buchstab E steht.
Derhalben wa dem also, so ist gewiß, das auch die lini AC, der lini DF gleich ist, und der winckel
BCA dem winckel EFD gleich, dann inen werden, wie angezaigt, gleiche linien underzogen, als AB
und DE, sy seind auch (welches eben so vil ist) mit gleichen linien begriffen des gleichen der winckel
BAC, dem winckel EDF gleich. Darauß entlich volgt, das der gantz triangel A, dem gantzen triangel
B gleich muß sein, welches nit allain augenscheinlich zu erachten ist, sonder auch mag erwisen und
demonstriert werden. Laß ich auß, ursach ist oben angezaigt” (my emphasis).

The Hybridization of Practical and Theoretical Geometry 4 : 73



the early modern German language, as was notably demonstrated by T. Morel,¹
the notion of Augenschein was used to describe direct ocular inspection, as in
the context of subterranean cartography, that is, when depicting the disposition
of ore veins in mining pits, as well as the borders between concessions within
mines, through which were established Augenscheinkarten (i.e. “maps by visual
inspection”). In this context, as in the establishment of other types of carto-
graphical representations, visual inspection had a properly legal value, being
considered as a reliable testimony in the case of disputes relating to property.²
J. Dumasy-Rabineau showed that ocular inspection and the diagrams drawn on
the basis of the testimony of the eye were also regarded as proper witnesses
and evidence in the legal sense in the medieval and Renaissance French prac-
tice of law.³ In this context, the “vues figurées” (i.e. “depicted ocular inspec-
tion”), which were related to geometrical proofs by the means of diagrams as
used in Bartolo de Sassoferrato’s fourteenth-century treatise Tiberiadis or De
fluminibus,⁴ could thus be taken as a “proofs by vision”.

The concrete character of the evidence (or Augenscheinlichkeit) in Xylander’s
commentary on Prop. I.4 is corroborated by his introductory remarks, in which
the proposition is presented as dealing with a property of the triangle that al-
lows two triangles to be “held against each other and compared” (“gegen einan-
der gehalten und vergleicht”).⁵ According to this passage, Xylander appears to
admit that Euclid’s demonstration of the congruence of triangles necessarily
implies the actual, mechanically performed, superposition of the two triangles,
which is precisely how Peletier understood this proposition and what incited
him to reject its mode of demonstration.The evidence of this proposition would
thus be gained, for Xylander, from empirical judgment in the sense that the fact
of mechanically holding two plane figures against each other, even in the imagi-
nation, would allow for an immediate and undeniable apprehension of the con-

¹ Morel 2022, chapter 5 (p. 151-156). I thank T. Morel for having made the relevant part of his
forthcoming book available to me.
² On “forensic cartography” by Augenschein in medieval and early modern Germany, see Horst
2014.
³ Dumasy-Rabineau 2013.
⁴ Dumasy-Rabineau 2013, 815. See also Frova 1999.
⁵ Xylander 1562, I.4, 8: “Erklärung: Dise proposition begreifft in gemain ain aigenschafft des trian-
gels, so zwen gegen einander gehalten und vergleicht werden”.

4 : 74 Angela Axworthy



a) b)

Figure 8: a) Oronce Fine, Geometria practica, 1532; b) Jean Errard, Geometrie et
practique d’icelle, 1594.

gruence, and thus of the equality, of the two compared figures. Moreover, Xy-
lander does not provide any demonstration at all, stating that he left it out (“laß
ich auß”) because “the cause was indicated above” (“ursach is oben angezaigt”).
Now, it was common in Xylander’s Euclid, as shown in his commentary of var-
ious other propositions of the Elements, to simply invite the reader to draw the
truth of the proposition from the drawn figure, as in Prop. I.24.¹

2.4. Numerical treatment of Euclidean propositions

As mentioned earlier, the adoption of a numerical treatment of magnitudes,
which was typical of practical geometry treatises (as central to the art of mea-
suring and to the practice of surveyors) (Figs. 8, a-b), occurred more and more
often throughout the early modern Euclidean tradition.²

As said, this approach to magnitudes was intrinsically non-Euclidean, since
numbers and magnitudes were dealt with separately, even when dealing with
the principles and properties of ratios and proportions which are applicable
to both types of quantity. For this reason, already in the medieval tradition,

¹ Xylander 1562, I.24, 17: “So zwen triangel haben je ainer zwo seitten des andern zwo seitten
gleich, aber der ain hatt ein groͤssern winckel mitt disen gleichen seitten begriffen, der hat auch ain
grosser basim. Erklaͤrung. In dise figur hastu den gantzen handel augenscheinlich, dann besich die
zwen triangel BAC und DAE” (my emphasis).
² On this topic, see Malet 2006 and Malet 2012. See also Corry 2022.
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in addition to the fact that specific numerical values were introduced in the
arithmetical books instead of, or in correlation with, the straight lines that were
used in the Greek tradition to express numbers in a general manner,¹ numbers
were sometimes introduced in Book V, which deals with the theory of ratios and
proportions applied to magnitude.² In the sixteenth-century printed tradition,
the introduction of numerical examples in the propositions of Book V was very
common.³

Book II, whichmostly deals with equivalences between areas of quadrangles,
also easily invited an arithmetical and even algebraic treatment of Euclid’s geo-
metrical propositions, for which commentators such as Billingsley and Clavius
included in their commentaries the arithmetical rewriting of the ten first propo-
sitions of Book II by Barlaam of Seminara.⁴

¹ This is itself intrinsically practical in the sense that numbers are dealt with in a less abstract and
general manner, which would notably enable the readers to verify the propositions in an operative
manner.The fact of providing specific numbers is related in this respect to the attribution of specific
lengths, areas and volumes to abstract geometrical magnitudes.
² See the thirteenth-century adaptation of Robert of Chester’s compilation edited in Busard 1996,
p.172-173; the commentary of Adelard’s translation by Johannes de Tinemue (Adelard III) in Busard
2001, 127-128 and the medieval text of Campanus’ commentary in Busard 2005, 168-170.
³ Among those who presented numerical examples in Book V, at least within the diagrams, are
Fine (Df. V.6, 110-111); Scheubel (e.g. Scheubel 1550, Fg. V.6, 129: Exempla in numeris sunt or V.3, 238:
Exemplum in numeris), Xylander (e.g. Xylander 1562, Df. V.8: 125), Foix-Candale (e.g. Foix-Candale
1566, Df. V.6, 40r), Billingsley (e.g. Billingsley 1570, Df. V.1, 126r), Commandino (e.g. Commandino
1572, Df. V.5: 58r), Clavius (e.g. Clavius 1611-1612, Df. V.2: 167) and Élie Vinet (e.g. Vinet 1575, Df.
V.5, b4r-v) and Jan Pieterszoon Dou (Dou 1606, V.1, 119).
⁴ Billingsley 1570, Prop. II.1: “Because that all the Propositions of this second booke for the most
part are true both in lines and in numbers, andmay be declared by both: therefore have I have added
to every Proposition convenient numbers for the manifestation of the same. And to the end the stu-
dious and diligent reader may the more fully perceave and understand the agrement of this art of
Geometry with the science of Arithmetique, and how nere & deare sisters they are together, so that
the one cannot without great blemish be without the other, I have here also ioyned a little booke
of Arithmetique written by one Barlaam, a Greeke authour a man of greate knowledge. In whiche
booke are by the authour demonstrated many of the selfe same proprieties and passions in number,
which Euclide in this his second boke hath demonstrated in magnitude, namely, the first ten propo-
sitions as they follow in order. Which is undoubtedly great pleasure to consider, also great increase
& furniture of knowledge. Whose Propositions are set orderly after the propositions of Euclide, ev-
ery one of Barlaam correspondent to the same of Euclide”. and Clavius 1611-1612, 367: “Quoniam
ad theorema sequens demonstrandum Theon quaedam assumit in numeris, quae demonstrata sunt
de lineis libro secundo, perinde ac si eadem de numeris essent ostensa; non alienum instituto nostro

4 : 76 Angela Axworthy



a) b)

Figure 9: a) Scheubel 1550, II.8, 152; b) Xylander 1562, I.37, 25.
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Scheubel and Xylander also manifested the connection between discrete and
continuous quantity by adding a number of sections (mostly in books I, II and
VI) which present an arithmetical and algebraic treatment of Euclid’s geometri-
cal propositions in the form of annexed computations (Figs. 9, a-b).

References to specific numerical values in Euclid’s other geometrical books
were also punctually made in various other commentaries, such as those by
Peletier¹ and Forcadel,² where we notably find specific units of measures.

duximus, nonnulla ex ijs, quae Geometrice ab Euclide libro 2 demonstrata sunt de lineis, hoc loco
de numeris demonstrare, Quod idem & Barlaam monachum fecisse à nonnullis est traditum. Seque-
mur autem eundem ordinem, quem Euclidem in secundo libro tenuisse conspicimus”. On Barlaam
of Seminara and his reception in the early modern era, see Corry 2022. See also, for the arithmetical
treatment of Book II, Pacioli 1509, II.9, 14r: “Illi trianguli sunt similes 5 ADF & ACP & ideo laterum
proportionalium per 4 sexti, quia angulus D maioris & angulus C minoris sunt recti & angulus A
unius est idem cum angulo A alterius sequitur per 32 primi angulos P parvi & F magni esse equales
& sic latera illos continentia sunt proportionalia per dictam 4 sexti & ideo ponendo AD 9 &DF 3 erit
CP 2, PG 1, AP R40, quia AC 6 & PF R10 cetera sunt clara & pratice dicitur vulgariter ‘se AD basa
del grande mida DF catecto che midara AC basa del picolo, cioe se 9 mida 3 che midara 6’ operando
habebis ut iam diximus” (my emphasis).
¹ Peletier 1557, I.47, 49r: “Nunc autem hoc Theorema quonam pacto ad Numeros accommodetur,
obiter ostendemus. In Numeris itaque locum praecipuè habet, quum maximus ad medium fuerit ut
5 ad 4: scilicet in proportione, quam vocant, sesquitertia. Eiusmodi sunt 3, 4, 5: tresque 6, 8, 10: & 12,
16, 20: sicque continuo progressu. Quadratum enim 20 est 400, ac tantundem efficiunt 144 cum 256,
quae suntQuadrata ex 12 & 16. Sed & cognito minimo laterum in Numeris, Scalenum Rectangulum
sic absolves. Dimidium cogniti duc in se: à producto aufert unitatem: habebis alterum latus. Huic
adde binarium: fiet maximum latus, seu subtensa. ut, sit minimum latus 10: Horum dimidium duc
in se: fiunt 25: à quibus ablata unitate, supersunt 24, medium latus: his adde binarium: fiunt 26,
subtensa. Horum enim Quadratum 676: Et tantundem efficiunt 100 & 576, Quadrata ex 10 & 24”.
² Forcadel 1564, I.36, 31v: “Par ceste proposition aussi, si on nous dict qu’un parallelogramme
contient 486 parallelogrammes esgaux entr’eux, & qu’il est une fois & demy autant long que large:
Nous pourrons prendre pour les deux costez d’icelly 3 & 2 lesquels multipliez ensemble dont, 6
qui sont esgaux ou valent 486, par cest proposition & par la premier commune sentence, & par
ainsi l’un des 6 en vaudra 81 des autres, duquel la racine quarree qui est 9 multipliee par 3 & par 2
faict 27 & 18 pour les deux costez du parallelogramme. Et si le rectangle contenoit 30 pieds quarrez,
certainement l’un des six en contiendroient, 5, & les quarrez des deux costez en contiendroient 45
& 20: & par ainsi les deux costez seroient racine de 45, & racine de 20”. Specific units of measure
are also found in Clavius’ commentary on Book II, in Clavius (1611-1612, I, 82-83), Df. II.1: “Habet
autem comprehensio haec parallelogrammi rectanguli sub duabus rectis lineis angulum rectum
continentibus, magnam affinitatem cum multiplicatione unius numeri in alterum. Sicut enim ex
multiplicatione 3 in 4 producitur numerus 12 qui in formam parallelogrammi constituitur, unde &
contineri dicitur sub 3 & 4. Ita quoque parallelogrammum ABCD, comprehensum sub duabus rectis
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Scheubel, in particular, introduced his commentary on Euclid with a nearly
eighty-page treatise of algebra (Brevis regularum algebrae descriptio, una cum
demonstrationibus geometricis), in which he taught the basic notions of alge-
bra and rules of algebraic computations, using concrete examples from money-
changing, commercial contracts, military art and the measuring of concrete ob-
jects.¹

As an example of this numerical approach to Euclid’ geometry, I will only
consider here Scheubel’s commentary on Prop. I.34,² in which the arithmetical
treatment of the proposition is provided immediately after the proof³ within a
separate part entitled Appendix. In many cases, such sections were designated
by Scheubel numerorum praxis⁴ or simply praxis,⁵ using the terminology which
Clavius would later use for his practical treatment of Euclid’s constructions in
Book I.⁶

As Scheubel explains here, the geometrical propositions which deal with tri-
angular areas, such as I.34, can be easily applied to numbers and treated arith-
metically. His aim is thus to teach a general method to determine the areas of
any triangle from the knowledge of their sides.

Appendix. Since this thirty-fourth proposition, and also many of those that follow, are

AB, BC, quarum illa sit 3 palmorum, haec autem 4 constat 12 palmis quadratis, qui quidem ex ductu
lineae AB, 3 palmorum in lineam BC, 4 palmorum producuntur” (my emphasis).
¹ Scheubel 1550, 3: “Proinde harum regularum exempla, cum eodem modo, quo in communi ne-
gociatione alias monetarum, mensurarum & ponderum, atque etiam quarumlibet aliarum rerum
numeri, enuncientur, his duobus exemplis positis, puto iam facile omne pro positum exemplum
exprimi posse, quare de enunciatione iam satis”.; 19: “4. Großus valet 10 nummulis, 24 verò großi
florinum constituunt. Aliquis nunc florinum permutans, tot pro eo grossos, quot nummulos cupiens,
quaeritur quantum utriusque recipiat. (…) 5. Est area quaedem quadrangulis, continens in superfi-
cie 588 areolas, inter se & toti similes. Quia autem huius areae longitudo ad latitudinem est, ut 4 ad
3: quanta ipsius longitudo, latitudo item sit, quaeritur. (…) 6. Dux in castris suo sub imperio habet
aliquot mille milites”.
² Euclid, I.34 (Heath 1956, I, 323): “In parallelogrammic areas the opposite sides and angles are
equal to one another, and the diameter bisects the areas”.
³ In this context, the text of the proposition is already accompanied with numerically-determined
diagrams.
⁴ Scheubel 1550, I.40, 120 and I.41, 121.
⁵ Scheubel 1550, II.4, 146.
⁶ See also Scheubel 1550, I.36, 117 or I.37, 118: Nunc quantum ad praxim numerorum; II.4, 143:
Sequitur calculus or 144 Aequatio.
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Figure 10: Scheubel 1550, I.34, 110.

found to be true for numbers, that is, for discrete quantity, as much as for continuous
quantity, by which we may therefore appropriately teach a general rule by which the
areas of any type of triangles (provided their sides are known) can be found, it was
necessary to provide it below through these words:
Let first the sides of the triangle, whose area it is proposed to find, be added together,
then let each of the sides of the triangle be subtracted from the half of this result. Three
numbers will remain, which, if they are multiplied with each other, along with the half
of the sides added together as a fourth number, that is, the first with the second, their
product with the third, and what will then be produced with the fourth number (and
the order according to which the numbers are taken, namely as the first, the second,
the third and the fourth, does not convey the order according to which they should be
computed), then through the square root of this last product will be exhibited how great
the area of the proposed triangle will be.¹

The method taught here in general terms by Scheubel is then applied to a
specific case (Fig. 10). Using the numerical values given in this example, the

¹ Scheubel 1550, I.34, 110: “Appendix. Quoniam autem haec propositio 34, & multae etiam se-
quentes, in numeris, quantitate nimirum discreta, non minus atque in quantitate continua, veræ
esse reperiuntur, quo id ostendamus commodius, canonem quendam generalem, per quem omnis
generis triangulorum (modo latera eorum nota fuerint) areæ inveniri possent, subijcere necesse
fuit, his verbis. Trianguli, cuius aream propositum est invenire, latera primò in unum colligantur,
à medietate deinde huius collecti singula trianguli latera subtrahantur. Relinquuntur autem tres
numeri, qui unà cum medietate collecti ex lateribus, tanquam numero quarto, si inter se multi-
plicati fuerint, primus scilicet cum secundo productum hoc cum tertio, quodque iam producetur
cum numero quarto (nec refert quo ordine numeri sumantur, quive pro primo, secundo, tertio vel
quarto reputetur) tum huius ultimi producti radice quadrata, quanta propositi trianguli area fuerit,
manifestabitur”.
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Figure 11: Scheubel 1550, I.34, 111.

method Scheubel taught to obtain the area of the considered triangle may be
summed up as follows:

1. Add together the lengths of the three sides of the triangle, which are in
the given example: 10, 8, 6. Added together, these are equal to 24.

2. Divide the result in half, from which is obtained a fourth number (here
called medietas): 24 : 2 = 12.

3. Subtract the amount of each sides from the medietas: 12 - 10 = 2; 12 - 8 =
4; 12 - 6 = 6.

4. Multiply the obtained numbers (including the medietas) with each other:
2 x 4 x 6 x 12 = 576.

5. The square root of the obtained number will be equal to the area of the
proposed triangle: √576 = 24.

In the following four pages of his commentary of I.34, Scheubel applies the
same rule to a multitude of examples (9 in total, counting the above) which
display different types of numbers (integers, fractions, irrational numbers…).
For instance, the example he considers immediately after involves irrational
numbers, as here, the square root of 180.

He also teaches early on a method to perform the computation in a quicker
manner (Fig. 11).

Abbreviation of the rule by economy. Since the numbers of the third multiplication, which
naturally come from the first and the second multiplication, are equal to each other,
which often occurs, as is evident from these two examples, the third multiplication is
left aside, and also the extraction of the square root will not be necessary. But the area
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of the triangle will be revealed immediately by either of two products, the first or the
second.
The first product is 18, just as the second, whereby the third is 324, whose root is af-
terwards 18, that is, the area of the triangle, and also the half of the parallelogram of
the first figure, which is what is to be shown by this rule. From the economy taught
above, the third multiplication could be left aside, and the question could be immedi-
ately answered by 18 or 18, that is, by the first or by the second product, which are the
same.¹

Through this arithmetical appendix, Scheubel did not offer a numerical
demontration of Euclid’s Prop. I.34 properly speaking, since he did not use
it to directly demonstrate that the opposite sides and angles of the parallelo-
grammic areas are equal to one another and that the diameter bisects them.
What he proposed instead is a method useful when dealing with parallelo-
grammic areas in general, as they can be considered as composed of two tri-
angles, showing thereby that Prop. I.34 can be useful to know how to deter-
mine the areas of triangles numerically. He proved thereby that, although this
proposition was only applied to magnitudes by Euclid (as he noted in the in-
troduction of his appendix), it is also true for numbers, just as the many ge-
ometrical propositions for which he applied an arithmetical and algebraic in-
terpretation in the appendix.² By doing so, Scheubel implicitly established the
correspondence between the generation of parallelograms and the generation
of numbers by multiplication, which was often used in sixteenth-century com-

¹ Scheubel 1550, 111: “Abbreviatio canonis per compendium. Cum tertiæ multiplicationis numeri,
qui nimirum ex prima & secunda multiplicatione proveniunt, inter se fuerint æquales, id quod sæpe
contingit, in his item duobus exemplis evidens est, eadem tertia multiplicatio negligitur, nec etiam
extractione radicis quadratæ tum opus erit. Verum statim per alterutrum productorum, primum vel
secundum, trianguli area indicabitur. Primum productum sunt 18, secundum tantundem, tertium
deinde 324. huius postea radix 18, area est trianguli, atque medietas etiam parallelogrammi vel
figurae primæ, quod hoc canone ostendere oportuit. Potuisset ex compendio iam præscripto, tertia
multiplicatio negligi, ac statim per 18 vel 18, primum scilicet vel secundum productum, quæstioni
responderi, quod idem fuisset”.
² Scheubel 1550, I.34, 110: “Quoniam autem haec propositio 34, & multae etiam sequentes, in nu-
meris, quantitate nimirum discreta, non minus atque in quantitate continua, veræ esse reperiuntur,
quo id ostendamus commodius, canonem quendam generalem, per quem omnis generis triangulo-
rum (modo latera eorum nota fuerint) areæ inveniri possent, subijcere necesse fuit, his verbis” (my
emphasis).
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mentaries on Euclid to explain Euclid’s Df. II.1, that is: “Any rectangular paral-
lelogram is said to be contained by the two straight lines containing the right
angle”.¹

Hence, the practicalcharacter of Scheubel’s treatment of this proposition does
not only come down to the numerical treatment of magnitudes, and to the fact
that it offers a means to measure areas (which, as said, was a central aspect of
the Latin tradition of practical geometry), but it is also related to the style of the
teaching provided in this framework. Indeed, rather than merely teaching the
procedure in a general and demonstrative manner, referring to undetermined
or abstract lengths and areas and exhibiting the principles or prior propositions
on which this procedure rests, Scheubel explained it through a series of exam-
ples that appeal to specific numerical values, in the manner of professionally-
oriented mathematical manuals (such as abbacus treatises). Most of the com-
mentary that is proposed with this set of examples provides a set of instructions
on how to perform the procedure in general and as applied to the values given
in the appended examples. The focus is thus set on the actions involved in the
taught computational rule or algorithm and demonstrating its truth through its
repeated application to different particular cases. The demonstration of the rule
is also somewhat empirical since it is its application to various sets of specific
numerical values (representing the lengths of the sides of various hypothetical
triangles) that would allow the reader to obtain a first-hand experience of the
truth, or at least of the efficiency, of the taught rule, and indirectly of Euclid’s
proposition.

2.5. References to artisanal applications

As mentioned earlier, the teaching of concrete applications of geometry (in-
cluding of certain Euclidean propositions) was frequent in practical geometry
treatises, which often taught measurement and computational practices useful

¹ Yet, interestingly, Scheubel did not comment on this when dealing with the definitions of Book
II, though he added an arithmetical and algebraic treatment of the propositions contained in this
book, when it was possible to do so.
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Figure 12: a) Oronce Fine, Geometria practica, 1532; b) Giovanni Pomodoro, Geometria
pratica, 1599; c) Jean de Merliers, Practique de geometrie, 1575.

to surveyors, as well as instrument-making and mapping techniques, among
other applications (Figs. 12, a-c).¹

As said, the original text of Euclid’s Elements, as well asmost of its premodern
versions, were devoid of references to exterior applications of geometry. How-
ever, in the sixteenth-century Euclidean tradition, references to artisanal uses
of Euclidean concepts and propositions appear in Tartaglia’s commentary on
the definitions of Book XI, for the production of material artefacts or commer-
cial arithmetic,² in John Dee’s annotations to Billingsley’s commentary on Book

¹ See, for example, Digges, Pantometria 1571: “The other parte named Longimetra the ingeniouse
practitioner wil apply to Topographie, fortification, conducting of mines under the earth, and shoot-
ing of great ordinance”. See also Peletier 1573, Problem 15, 29: “Ce que les ouvriers pourront faire
aisément & succinctement, pour peu qu’ils ayent pratiqué la Geometrie”.; Problem 17, 32: “l’office
du mesureur, sera de chercher tele ligne perpendiculaire par artifice d’instrument”; Problem 23, 42:
“La commune usance des Artisans est un peu plus compendieuse, mais toutesfois tiree de cete cy”
(my emphasis).
² Tartaglia 1543, Df. XI.10, 178v: “questa diffinitione ha insegnato alli artifici il modo di formare
le palle di pietra, o d’altra materea, & che’l sia il vero el si sa che se uno artifice vol fare una palla
di pietra che sia perfettamente, al senso tonda lui forma prima un mezzo cerchio vacuo in qualche
banda di ferro, over di legno, over daltra materia grando, over piccolo secondo la qualita della palla,
over palle che desidera formare, puoi va scarpellando attorno attorno secondo l’ordine del detto
vacuo di mezzo cerchio cioe giustando spesso quella forma secondo che va scarpellando & cosi pian
piano la redusse a perfettione”. See also Df. I.2, 6v: “Hor poniamo che sieno due misure materiale di
alcuno metallo, over di legno (si come sono quelle che usano questi mechanici per misurar le cose
occorrente) &che dette misure siano di egual longhezza, come serebbe che fussino duoi passi, & che
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XII, for engineering and instrument-making,¹ in the 1564 French translation by
the Royal lecturer Pierre Forcadel for architecture and commercial arithmetic,²
and in Xylander and Scheubel, for surveying and commercial arithmetic.³ I will
nevertheless only consider here Forcadel’s case, as it is the most exemplary case
of all with regard to this issue.

In his commentary on Prop. I.43, which states that “In any parallelogram
the complements of the parallelograms about the diameter are equal to one
another”,⁴ Forcadel taught a method to determine the length of a side of a paral-
lelogram from the knowledge of its area and of its other side which, he claimed,
is used in the trade of cloth to determine the length of a piece of cloth of given
width that is necessary to have in order to obtain a surface equal to that of
another piece of cloth with a different length.

Let us take from here that, from two equal and rectangular complements, knowing the
content of one [complement] and of one of the sides of the other, we will obtain the

ciascuno di essi passi sia diviso in cinque piedi, liquali piedi siano di onze xii come si costuma fra
li Architetti”.
¹ Dee, in Billingsley 1570, XII.1, 357v: “The greatMechanicall use (besidesMathematicall considera-
tions) which, these two Corollaryes may have inWheeles of Milles, Clockes, Cranes, and other engines
for water workes, and for warres, and many other purposes, the earnest and wittie Mechanicien will
soone boult out, & gladly practise” (my emphasis).
² Forcadel 1564, VI.4, 161v: “Et de cecy les massons prennent la reigle pour mesurer le plan dessus
du nombril d’un puis telle que s’ensuit” ; II.4, 45r-v: “de là vient que ceux qui traffiquent les monnoyes,
multiplient les deniers d’aloy particuliers par les marcs particuliers unchacun par le lien, & divisent
les produicts adjouster ensemble, par tous les marcs proposez, & en vient les deniers de l’aligation”.
See also infra, p 84 fn.
³ Scheubel 1550, 22-23: “Est aedificium quoddam παραλλήλως secundum quatuor eius latera ex-
tructum, cuius altitudo cum ad suam longitudinem Superbipartientem tertias, ad latitudinem vero,
Duplam sesquialteram constituat rationem, altitudine deinde cum longitudine, ac producto tandem
cum latitudine multiplicato, numerus 39930 ulnarum producatur, quantae huius aedificij singulae
dimensiones fuerint, quaeritur (…) Murus, cuius longitudo quidem in 3½ ad latitudinem, altitudo
verò in quicupla ratione ad longitudinem constructus est, ab Artifice tandem 980 coronatis redim-
itur. Quoniam autem, cum pro singulis virgis, ut dicitur, extruendis, tot coronati, quot ipse murus
in latitudine virgas habet, expositi sint, quae nam huius muri altitudo sit, longitudo item, ac lat-
itudo etiam, quaeritur”. See also supra and Xylander II.1, 46: “Was groͤssen nuß diser vortail in
der rechenkhunst hab, mag niemandt gnugsam erzelen. Dan es ist offenbar das die welsch practic
(welche allain ist ain gschwinder, schoͤner khunstlicher und artlicher vortail und proceß der regel de
tri) so alle andere rechnungen, die Coß ausgenomen” (my emphasis).
⁴ Euclid, VI.14 (Heath 1956, I, 340).
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other side. For by dividing the given content by the known side, will result the unknown
content. Those who are engaged in the trading of goods (ceux qui traffiquent la marchan-
dise) are used to ask this in this manner: I have bought twenty-four ells of cloth of three
quarters in width. I want to double them with another type of cloth which measures
two thirds in width. I ask how much of it I should take. They multiply three quarters
by twenty-four, or they take the three quarters of twenty-four, which amounts to eigh-
teen for the content of one and of the other complements, which number, divided by
two thirds, amounts to twenty-seven for the unknown side of the other complement,
and therefore, it will be necessary to take twenty-seven ells of the cloth that measures
two thirds in width. Common people (le vulgaire) calls this way of proceeding (façon de
faire) “inversed rule of three” (reigle de trois rebource), but we, according to Euclid in the
proposition 14 of the sixth book, can name it “rule of three reciprocals” (reigle de trois
reciproques).¹

The method was first designated here by the name given to it by common
people (“le vulgaire”), namely “reigle de trois rebource”, which corresponds to
the designation of this procedure in French practical arithmetic treatises,² but is
afterwards given a more scientific name, based on Euclid’s Prop. VI.14,³ namely
“reigle de trois reciproques”.The problem and the method were here formulated
rhetorically, using only words instead of numbers or symbols or instead of an
appended computation. It is even deprived of a diagram. However, Forcadel also

¹ Forcadel 1564, I.43, 35v-36r: “Prenons d’icy que de deux suplemens esgaux & rectangles, sachant
le contenu de l’un, & l’un des costez de l’autre, on aura l’autre costé: car en divisant le contenu
donné par le costé congneu, il en viendra le costé incogneu: ceux qui traffiquent la marchandise,
ont accoustumé de le demander ainsi, j’ay achepté vingt-quatre aulnes de drap de trois quartiers en
largeur, je les veux doubler d’un autre sorte de drap qui à deux tiers en largeur, je demande combien
il m’en faudra prendre. Ils multiplient trois quartiers par vingt-quatre, ou prennent les trois quarts
de vingt-quatre, il en vient dix huict pour le contenu de l’un & de l’autre suplement, lequel nombre
divisé par deux tiers, faict vingt-sept, pour le costé incongneu de l’autre suplement, & par ainsi, il
faudra prendre vingt-sept aulnes du drap ayant deux tiers de large: le vulgaire nomme une telle
façon de faire la reigle de trois rebource, mais nous avec Euclide en la 14 proposition du sixiesme
livre, la pourrons nommer la reigle de trois reciproque”.
² See, for example, Peletier’s Arithmetique (Peletier 1554, 68-69): “De la Regle de Troes Reverse ou
Rebourse. Chapitre IX. La Regle de Troes Rebourse s’appelle einsi: parce qu’an elle l’operacion ét au
rebours de celle qui se fèt an la Regle de Troes Directe”.
³ Euclid VI.14 (Heath 1956, II, 216): “In equal and equiangular parallelograms the sides about the
equal angles are reciprocally proportional; and equiangular parallelograms in which the sides about
the equal angles are reciprocally proportional are equal.
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always made sure to refer to the concrete objects that are considered (pieces
of cloth), to the specific quantities taken as examples (24; 18; ¾; ⅔…) and to
the specific units in which they are measured and counted (ells or, in French,
“aulnes”).¹

Another proposition about which Forcadel referred to the concrete applica-
tions of Euclid’s geometry is Prop. III.31,² where he mentioned the use archi-
tects make of the first part of the proposition to determine, by the means of
a set-square, the uniformity of the concave parts of columns and to construct
and measure rectangular parallelepipeds, which would then correspond to the
shape of buildings and of their inner divisions.

From the first part of this proposition, Architects have taken the composition of the
set-square, by the means of whose right angle they see very well if the flutings of the
columns are correctly made, which is when the right angle of the set-square touches
all sides of the concavity of each excavation (canal). Also architect artisans (architectes
artisans) use the same set-square to constitute (soustenir) as much as to square (esquarrir)
their rectangular parallelepipeds.³

The actual use of the set-square to verify the configuration of columns is only
outlined in a rough manner, but gives a sense of the way in which the architect
would use the instrument on site. Interestingly, Forcadel seems to distinguish
here the architect properly speaking, to whom he attributed the invention of
the set-square and the task of verifying the uniformity of columns in already
constructed edifices, and the “artisan architect”, whose task is to conduct con-
structions and to measure surfaces and volumes of buildings and rooms rather
than to observe the formal perfection of ornemental details. Through these pre-

¹ Although this form is improper to the style of Forcadel’s text, I add here its symbolic expression
for an easier comprehension: 24 ⋅ ¾ = x ⋅ ⅔ ; 18 = x ⋅ ⅔ ; 18 : ⅔ = x ; x = 27.
² Euclid, III.1 (Heath 1956, II, 61): “In a circle the angle in the semicircle is right, that in a greater
segment less than a right angle, and that in a less segment greater than a right angle; and further
the angle of the greater segment is greater than a right angle, and the angle of the less segment less
than a right angle”.
³ Forcadel 1564, III.1, 102r-v: “De la premiere partie de ceste proposition, les Architectes ont pris
la composition de l’esquierre, par l’angle droict duquel ils voyent tres bien si les caneleures des
colomnes sont justement faictes, qui est quant l’angle droict de l’esquierre touche par toute la
concavité d’un chacun canal: aussi les architectes artisans se servent du mesme esquierre, tant à
soustenir qu’à esquarrir leurs parallelepipedes rectangles”.
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cisions, Forcadel seems intent to display his allegedly broad knowledge of the
activities of architects.

References to other applications (in architecture, banking, military logistics,
but also astronomy and gnomonics) are also made by Forcadel in various other
propositions and with varying levels of details.¹

3. Conclusion

As was shown at the beginning of the present analysis, in the medieval and
Renaissance texts that proposed a discourse on the division of geometry, theo-
retical and practical geometry were clearly distinguished. In this context, prac-
tical geometry was generally presented as an art of measuring specific or con-
crete magnitudes, or more rarely (as in Gundisalvi’s De divisione philosophiae)
as the geometrical knowledge necessary to artisans. Theoretical geometry was
then described as a purely contemplative and demonstrative knowledge of the
principles and properties of abstract magnitudes and was directly or indirectly
identified with the geometry dealt with in Euclid’s Elements.

Considering the treatises whichwere labelled as belonging to practical geom-
etry in the Latin middle ages and in the sixteenth century, we also saw that, in
spite of a number of aspects which allows us to recognise a given geometrical

¹ Forcadel 1564, II.1, 44v: “Nous prenons aussi icy la façon de changer la valeur de quelque piece de
monnoye que ce soit, en plusieurs sortes de plus petites monnoyes, pour en avoir autant de l’une que
de l’autre, comme par exemple: si quelqu’un me dict qu’il desire changer une piece de monnoye qui
vaut 34 sols, en sols, en doubles, & en liards, & qu’il desire avoir autant de l’une sorte que de l’autre,
alors (…)” ; Forcadel 1564, II.4, 49v: “Par ceste proposition si on nous dict, qu’un maistre de camp,
a un certain nombre de soldats, lesquels il desire metre en bataille en telle sorte qu’ils soyent mis
en une figure de quatre costez, & qu’il y en aye autant d’un costé que d’autre (…)”; Forcadel 1564,
III.1, 78r: “Prenons icy que si lon prent un gnomon ou aiguille d’arain propre à monstrer les umbres,
comme le met Vitruve au premier livre de son Architecture, & lon la met perpendiculairement sur
le plan de quelque Orizon, ou sur un plan parallele, à l’un des Orizons principaux d’un chacun
lieu (…)”; Forcadel 1564, V.4, 132v: “Par ceste proposition icy si on me dit que trois aulnes ½ de
quelque marchandise coustent 5 livres ½, & onme demande combien cousteront 7 aulnes de la mesme
marchandise, alors (…)” ; VI.5, 155r: “Quand lon nous dit que quant 10 hommes en 12 jours ont gaigné
15 escus, combien gaigneront 6 hommes en 18 jours, nous avons accoustumé de multiplier les trois
derniers nombres (…)”.
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work as a treatise of practical geometry, there already was no clear-cut distinc-
tion between what is properly practical and what is properly theoretical with
regard to their content and style, offering a theoretical treatment of a profes-
sional type of geometrical knowledge and constituting as such a hybrid between
a utilitarian form of geometrical knowledge and a scholarly and speculative
teaching of geometry. And throughout its early modern development, notably
in the sixteenth century, the practical geometry tradition, as it was gaining in
diversity of content and style, interacted in a clearer and stronger manner with
the scholarly tradition of geometry represented by Euclid’s Elements. In turn,
translations and commentaries on the Elements increasingly took on features
most often found in practical geometry treatises and which were considered as
different from, or even contrary to, the essential characteristics that were typi-
cally associated with Euclid’s geometry. In the second part of this article, I gave
several examples to illustrate this introduction of a practical approach to geom-
etry within the sixteenth-century Euclidean printed tradition, which go from
the replacement of Euclid’s rational and demonstrative proofs by more practi-
cal or empirical explanations to the fact of presenting utilitarian applications
of Euclid’s propositions in the commentary.

All of the considered practical features were certainly only present in a lim-
ited number within the sixteenth-century Euclidean corpus and, when some of
these features were significantly common, they were not present to the same
extent in all the concerned works. Also, their acknowledgement as features
of a practical nature, if not self-evident or made clear by the author, mostly
depended on the general intention behind the reworking of Euclid’s text, on
the number of different types of practical changes used by each of them, as
well as on the intensity with which they were introduced.¹ Furthermore, in the
works considered here, which hold an exemplary status in this respect within
the sixteenth-century Euclidean tradition, certain practical elements only oc-
cupied a restricted place. Yet, they were most often introduced in a strategic
place, that is, within the first book or the first propositions, through which

¹ It was unfortunately not possible in the frame of this article to provide an outline of the distri-
bution of practical features throughout the whole corpus of sixteenth-century Euclidean tradition
and within the few commentaries that were analysed here. This will be the topic of a forthcoming
study.
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the student would be made familiar with the fundamental concepts and modes
of operation inherent to Euclid’s geometry. Moreover, in comparison with the
Latin medieval tradition, such practical treatment of Euclid’s propositions was
much more extensive and it was practical in a much stronger and more explicit
manner.

Themotivations behind this practical treatment of Euclid’s propositions were
not always clearly formulated in the context of the considered commentaries,
apart to some extent in Tartaglia and Xylander. But the institutional status of
the authors of these translations and commentaries of Euclid’s Elements,¹ the
type of audience towhich theywere primarily addressed² and to a certain extent
the language in which theywere written,³ among other factors, allows us to con-
sider that their intention was above all to teach Euclid’s propositions in a more
accessible, meaningful, useful and/or recreative manner, helping beginners to
gain an appropriate understanding and memory of the geometrical content of
the Elements in the most effective manner, guiding their use of the instruments
that could be used in and out of the classroom to perform Euclid’s constructions
and offering them an insight of the profit that could be gain from the study of
geometry.

The fact of adapting Euclid’s text so that it could be used as an introduction to

¹ Nearly all were professors of mathematics. An exception would be Billingsley, who is not known
to have taught mathematics.
² These would have mainly been their students, although the printed format allowed for a wider
circulation. In the cases of Tartaglia, Xylander and Billingsley, and perhaps also Forcadel, the fact
of publishing a vernacular translation of Euclid would to a certain extent allow for, and be intended
to, a more diverse audience.
³ That is, in the case of the vernacular translations of Tartaglia, Xylander, Forcadel and Billings-
ley. It is however important to bear in mind that the dichotomy between Latin and vernacular
cannot simply be equated with the dichotomy between scholarly and lay, or between scholars and
craftsmen. Indeed, as expressed by Giacomotto-Charra and Silvi (2014, 14): “La vernacularisation
n’implique pas nécessairement la vulgarisation, de même que la vulgarisation ne saurais se limiter
à la vernacularisation”. In other words, the fact of writing a treatise on a topic generally transmitted
in Latin (i.e. a language typically used by a learned audience in the sixteenth century) in the vernac-
ular (i.e. the language of everyday life, understood by a greater number of people), or of translating
a work initially written in Latin into a vernacular language, does not necessarily imply that the
work was primarily addressed to a less educated or lay audience, even if it would de facto be more
accessible to the common man, at the same time as to more erudite readers. On this issue, see also
Beaujouan 1975.
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practical geometry, and to practical mathematical texts more generally, is not
excluded in certain cases, in particular in thework of Tartaglia or in that of Clav-
ius, who gave a significant place to practical mathematics in the mathematical
curriculum of the Jesuit colleges¹ and who wrote many practical mathematical
treatises, including his 1604 Geometria practica. This work not only contained
many references to Euclid’s Elements, but also took up a part of its content,²
among which his construction of the quadratrix.³

The more epistemological motivations relating to the demonstration of the
mechanical origin of certain geometrical constructions may only be indirectly
sensed in the commentary of Clavius, and perhaps also in that of Billingsley,
who both referred to the homology between the abstractly represented genera-
tion of geometrical objects from a point, a line or a surface and the instrumentally-
produced geometrical magnitudes.⁴ However, such a discourse was not then re-
lated to the practical interpretation of Euclid’s propositions that was offered
by these authors, being rather set forth in the context of a more universal dis-
course on the essential properties of geometrical objects. Also, in Billingsley’s
case, such a correlation between the mechanical and abstract generations of fig-
ures may have had a primarily pedagogical purpose, aiming to help the reader
better grasp the meaning of Euclid’s definitions.

Also, it is yet unclear to me whether these authors consciously or uncon-
sciously aimed to contribute thereby to the constitution of a new approach to
geometry that would incorporate or conjoin both approaches to geometry, the-
oretical and practical, into one comprehensive type of geometrical teaching, or
even that they conceived this to be possible or desirable.⁵ Yet, by proposing a
more extensive and explicit practical treatment of parts of Euclid’s Elements,
they offered de facto to their readers, who were mainly students and profes-

¹ On Clavius and the Jesuit ratio studiorum, see Romano 1999, chap. 2-3, Smolarski 2002, and Gatto
2006.
² Knobloch 1997.
³ On Clavius’ construction of the quadratrix, a curve intended to solve the quadrature of the circle,
in his commentary on Euclid and in hisGeometria practica, see Bos 2001, pp. 160-166, and Axworthy
2022, 217-219.
⁴ Axworthy 2022, 146-147, 157 and 199-202.
⁵ A promising case in this regard may be found in the approach of Joachim Jungius in the seven-
teenth century, as shown by Friedman 2022.
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sors (though they would also be of interest to other types of readers, such as
erudite notables, members of the administration and learned artisans) a new
representation of Euclidean geometry in which the objects, methods and argu-
mentative style of scholarly geometry mingle with those of a more practical and
useful type of geometrical knowledge. As such, translations and commentaries
of Euclid such as those I presented here effectively contributed to erode the dis-
tinction between theoretical and practical geometry that circulated in pre- and
early modernWestern mathematical culture, concretely demonstrating the mu-
tual dependence of each of the two subdivisions of geometry on the other. This
certainly does not mean that works pertaining more strictly to one or the other
kind of geometrical teaching did not continue to be written and published up
to the nineteenth century (at least), but the practical reworking of Euclid made
by commentators such as Scheubel, Forcadel or Clavius provided, besides such
works, the representation of a properly hybrid approach to geometry through
which the theoretical is made practical.

It is important to note, furthermore, that just as there was not one type of
approach to practical geometry in the pre- and early modern era, there was not
one type of practical approach to Euclid’s Elements adopted by its commenta-
tors, one (as Scheubel) focusing mostly on the numerical treatment of Euclid’s
geometrical propositions, another (as Clavius) on the purely constructive ver-
sions of Euclid’s problems, and another yet (such as Forcadel) on their utilitar-
ian applications. The way Euclid was made practical in the sixteenth century
thus offers a representation of the multitude of different ways in which could
be defined practical knowledge in the field of geometry. Therefore, the practi-
cal approach to Euclid’s principles and propositions in the sixteenth-century
printed tradition did not only contribute to changing the image, content and
style of theoretical geometry, as represented by Euclid’s Elements, but also the
very image of practical geometry, which was, in this context, less and less re-
stricted to an art of measuring and representing more generally any form of
hands-on, socially-relevant, useful and recreative geometry.
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